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TUTORIALS



Dynamic Models in Transportation

Warren B. Powell
Princeton University

The field of logistics is becoming increasingly dominated by the need for technologies
that support real-time decision making. Using recent advances in information technolo-
gies, decisions concerning the routing and scheduling of drivers and vehicles, management
of vehicle inventories, and the design of service offerings, can be made in a real-time envi-
ronment with information that is constantly changing. Dynamic and stochastic models
are playing an increasingly important role in such a setting: by definition, one is forced
to make decisions before all the information one would wish to have becomes available
and then modify these decisions as new information is received. The most common form
of stochasticity arises as a result of uncertainty concerning some aspect of demand (level
of demand, location, timing, etc.) but many other forms may be present, as well (length
of travel times, resource availability, service breakdowns, etc.). As a rule, once a set
of decisions has been made and some action has been taken, the decision-makers have
the opportunity to observe an outcome of (some of) the uncertain events and must then
respond to these events. The inherent dynamism of this type of operation often intro-
duces important analytical complications: initial decisions may be greatly affected by
how well the decision- makers —and the system they manage— are equipped to respond
to subsequent random events.

Dynamic models undoubtedly represent the “wave of the future.” Their increasing
prominence is driven by technology: the explosive growth in the availability of real- time
information about transportation and logistics systems is turning the focus of operations
researchers away from the traditional static planning models. Carriers and shippers are
avidly seeking the benefits afforded by the ability to rapidly and continually ”recon-
figure” the operation of a transportation system to improve service or reduce cost. In
addition, even when it comes to strategic planning, methodological developments over
the last few years have made possible the development of models that capture better
the uncertainty and the dynamic characteristics associated with the transportation and
logistics environment. Clearly such models often constitute far more accurate represen-
tations of reality than some of their deterministic and static forebears.

Especially demanding are multistage problems where the process of making decisions
and observing outcomes occurs on a continuous, rolling basis. A set of vehicles may
be routed over the course of the day while demands are continuously being called in.
With each new demand, the vehicle tours may be redesigned, not only to accommodate
actual demands, but anticipated demands as well. Another example arises in dynamic
fleet management, where empty vehicles are repositioned to anticipate future demands.
Such decisions are made daily, as shipper demands are continuously being received at a
dispatching center.

One question that comes up with surprising frequency is: what constitutes a dynamic
model? To answer this, we must first distinguish between a problem, a model, and the



application of a model. A problem is dynamic if one or more of its parameters is a
function of time. This includes such problems as vehicle routing with time windows or
with time-varying travel times. Note that two types of dynamic problems are covered
here. The first type, which we call problems with dynamic data, are characterized
by information that are constantly changing. Dynamic data might include real-time
customer demands, traffic conditions, or driver statuses. The second type is problems
with time-dependent data which is known in advance. In this category, we would include
problems such as vehicle routing with time windows where all the information is known
in advance, but where this data is a known function of time. Other examples of time-
dependent data might be customer demands or travel times, if we can assume them to
be known functions of time.

Similarly, a model is dynamic if it incorporates explicitly the interaction of activities
over time. The simplest dynamic model is a dynamic network, a construct widely used
in routing and scheduling problems. It is useful, however, to distinguish between deter-
ministic, dynamic models, and stochastic models which explicitly capture the staging of
decisions and the realization of random variables. For example, it is not unusual to solve
deterministic, dynamic models without recognizing in any way the dynamic structure of
the problem. By contrast, stochastic, dynamic models require specific steps to be taken
in the design of a solution strategy.

Finally, we have a dynamic application if a model is solved repeatedly as new in-
formation is received. Dynamic applications of models place tremendous demands on
access to real-time data and on the performance of algorithms. Typically, it is neces-
sary to update information, optimize and return results in a matter of minutes or even
seconds.

A useful illustration of these concepts arises in the problem of routing a vehicle over a
congested transportation network. Clearly, traffic conditions are changing over time, and
hence the problem is dynamic. We might select an optimal route using a static model, if
we chose not to represent dynamic conditions explicitly within the model. (For example,
we could find the optimal route by simply minimizing average travel times, thus working
with one particular static representation of the network.) We might also solve the static
model repeatedly as new information became known, giving us a dynamic application of
a static model. Yet a third alternative might be to develop a model that would consider
explicitly the anticipated dynamic changes in traffic conditions and apply it once at the
outset of the period of interest. In other words we would select one route and then
stick to it even as conditions change. This would constitute a static application of a
dynamic model. Finally, had we chosen to solve the dynamic model repeatedly as new
information became known, we would have a dynamic application of a dynamic model.
This example, then, indicates how one can have a static or dynamic application of a
static or dynamic model.

In this tutorial, we review important dynamic planning problems, and review mod-
eling and algorithmic strategies that can be used. Special attention is given to my-
opic models, deterministic dynamic models, and explicit stochastic models. Emphasis is



placed on computationally tractable techniques that have practical applications. Sources
of uncertainty are discussed, and special attention is given to the pros and cons of ig-
“noring future information.

Dynamic models pose a number of interesting challenges, ranging from model for-
mulation to validation and implementation. We contrast dynamic models with static
models, and discuss the ways that “static thinking” pervades our approach to problems.
While the field of operations research has developed powerful tools, using them in a
dynamic setting often involves a difficult transition to a different set of priorities. Draw-
ing from a number of actual projects involving the implementation of dynamic routing
(some successful, some not) we review challenges that arise practicing our profession in
a real-time setting.



RECENT ADVANCES IN METHODS AND MODELS IN URBAN TRANSPORTATION PLANNING
Michael Florian, C.R.T. and Department d'INRO, University of Montreal, Canada

Abstract: The models and methods used in the quantitative analyses employed for urban transportation
planning studies have been the subject of considerable refinement over the past few years. From the large
body of academic research in the area of network equilibrium models a considerable transfer to practice has
occurred. While the gap between the theoretical research results available and the methods that have found
their way to practical application is still large, the level of sophistication of models used in practice has
increased. The purpose of this paper is to identify, describe and illustrate with selected applications some of
the more advanced methods that have been successfully used.

One type of network equilibrium model that has found a variety of applications is the multiclass network
equilibrium model which distinguishes different classes of users. While the model was first proposed in the
scientific literature in the early '70s it is only during the past few years that several applications became
widespread. In the U.S.A. the model was used for analyzing traffic on high occupancy vehicle (HOV)
which has access to privileged lanes on urban auto routes simultaneously with traffic of low occupancy
vehicles (LOV) which do not have access to the HOV lanes. In Europe and Central America the model
found an important application in the forecasting of traffic on toll highways in and around urban areas.
Stated preference analyses are used to determine the value of time for various socio-economic groups. This
value of time is then used in multiclass network equilibrium models with generalized cost to predict the
expected use of these new facilities. The mathematical formulation of such models is presented in detail.

Bi-level optimization problems are among the most difficult problems in the field of mathematical
programming. One such problem is the adjustment of an origin-destination matrix from observed flows
when the network flows are equilibrium flows. In spite of the inherent theoretical difficulty of such
problems and approximate solution algorithm, which may be classified as a Gauus-Seidel like
decomposition, has proved to be very effective in solving very large scale problems. The importance of
being able to solve such problems stems from the fact that home interview surveys are rather costly and the
update of an existing origin-destination matrix by using the most current data on observed counts is
effective and .cost efficient. The mathematical formulation and properties of this bi-level optimization
problem is discussed in detail and results, originating from cities in Europe and North America, are used
for illustrating the quality of the results obtained.

The classical way of specifying demand models for urban transportation planning models has undergone
many improvements and fundamental changes. Rather than rely on the sequence of trip generation, trip
distribution and mode choice models calibrated on aggregate zone data, which are not particularly sensitive
to policy decision variables, a variety of demand models, which are calibrated by using disagregate data,
have come into wide use. Another aspect of demand modelling which is now considered to be important is
the phenomenon of trip chaining, where a trip from an initial origin to a final destination contains
intermediate destinations. Perhaps the simplest model of trip chaining is a network equilibrium model of
travel on combined modes such as "park and ride". This model may be specified with a hierarchical mode
choice function. A proper network equilibrium model may be stated and an equivalent optimization
problem, solvable by a convergent algorithm, may be derived. We present in detail such combined mode
equilibrium problems and show how the analysis may be extended to more general trip chaining models.

' The presentation is concluded with an outline of other research results in the area of network equilibrium
models which may eventually find successful application in the process of urban transportation planning.



MODELING DYNAMICS IN TRANSPORTATION NETWORKS

by Ennio Cascetta
Dept. of Transportation Engineering
University of Naples Federico I

1. INTRODUCTION

Traffic assignment models are used to simulate link flows on
transportation networks and the resulting link performances, such as travel
times, congestion, pollution, and energy consumption. They are the basic
tool for long term and short term planning and design of both urban and
extra-urban transportation networks. Recently, on-line applications have
been also proposed for supporting real-time control operations.

Most traffic assignment models share a common structure made up by:
o a supply model simulating the network performances;

e a demand model simulating users' behaviour
o a supply/demand interaction model simulating the interaction between
users' behaviour and network performances. _

Two types of dynamics (i.e. variations over time) are relevant for the
analysis of transportation networks:

« evolution from one reference period to the other, called day-to-day
dynamics, which mainly affects supply/demand interaction,

+ variations within a reference period, called within-day dynamics, which
mainly affect supply and demand models.

1.1 Day-to-day dynamics

Traditionally traffic assignment models have been formulated following
an equilibrium approach in which a self-reproducing or fixed-point state of
the system is searched. This approach relies on elegant and well developed
mathematical foundations which can be effectively solved for large-scale
networks, at least for the within-day static case. Furthermore, the
equilibrium approach does not require the explicit modeling of users'
memory and learning processes, since only one state of the system is looked
for, independently from the sequence of states needed to reach it.

However equilibrium analysis is significant under some assumptions on
its "significance" (coincidence or closeness with the actual state of the
system) and analytical properties, such as existence, uniqueness and
stability. Moreover, transients due to modifications of demand and/or
supply cannot be simulated through equilibrium models, nor a statistical
description of the system state, ie. means, modes, moments and, more
generally, frequency distributions over time can be obtained. This implies
that dynamic control strategies (such as adaptive traffic lights, variable
message signs, route or parking guidance systems) reacting to perturbations



in demand and/or supply can not be effectively simulated through an
equilibrium approach.

The inter-periodic (or day-to-day) dynamic approach can be seen as a
generalization of the equilibrium paradigm. First of all, it allows the
simulation of some relevant aspects such as transients, temporal
fluctuations and multidimensional dynamics with different "propensity to
change” over different choice dimensions (e.g. activity location, trip
frequencies and distribution, mode and path choices). Moreover inter-
periodic dynamic models can be seen as a tool for the analysis of theoretical
properties of system convergence to different attractors (not necessarily
equilibrium or fixed-point) such as existence, uniqueness and stability. From
this view-point these models could be also called disequilibrium models,
whilst the equilibrium models could be considered day-to-day (or inter-
periodic) static.

This wider generality is obtained at the expenses of an extra complexity
since an explicit modeling of the system adjustment mechanism is required,
including users' memory and learning processes and their interaction with
operating control strategies. On the other hand, only in this way the role of
habit and non-compensatory behavior in users' choice, needed to effectively
assess dynamic control strategies, can be explicitly simulated.

Two types of day-to-day dynamic process models can be formulated.
Deterministic process models, based on non-linear dynamic system theory,
can be used to analyze the asymptotic behavior of the system. They can be
also used to study equilibrium properties, since the equilibrium state can be
seen as a fixed-point attractor of a deterministic process under some
hypotheses on users' learning mechanisms and switching behavior.
Stochastic process models based on stochastic process theory, allow an
explicit simulation of the intrinsic randomness of both demand and supply.

1.2 Within-day dynamics

If travel demand is assumed (approximately) constant over a reference
period (e.g. morning peak period) which is large enough to allow the
system to reach a stationary flow pattern, the assignment model is
called within-day or infra-periodic static. Time-dependent demand (due for
instance to rush hour) and/or changes in supply (due for instance to
incidents or weather conditions) generally determine time-dependent flows
and over saturation queues, which can be only simulated through within-day
or infra-periodic dynamic models. These models also allow to take into
account the effects of real-time control strategies (such as variable message
signs, radio broadcasting, etc.).

The extension of within-day static models to take into account within-
day dynamics is by no means straightforward, since within-day dynamic
supply modelling requires entirely new definitions of relevant variables
and a reformation of the problem, even though within-day dynamic users'
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behaviour can be modelled through an extension of the within-day static
case.

1.3 Classification of dynamic assignment models
Since the types of dynamics affect different sub-models several

assignment models can be classified according to the scheme shown in the
following table.

day-to-day static day-to-day dynamic
equilibrium deterministic stochastic
process process

within-day static

within-day dynamic

2. CONTENTS OF THE TUTORIAL

In this tutorial inter-periodic or day-to-day dynamics is addressed first.
In particular at first a general formulation, including most within-day static
models in literature, is proposed. Supply and users' behavior models,
including both learning, forecasting and choice processes are described.
Then several general and simplified formulations of deterministic process
models and their fixed-point attractors, giving also conditions for their
coincidence with equilibrium models are presented.

Within the framework of deterministic processes the relevance of day-
to-day dynamic models for demand/supply interaction in comparison with
the traditional user equilibrium approach is discussed, and conditions for
coincidence of fixed-point attractors and equilibrium states are stated.

Conditions for existence and uniqueness of fixed-point attractors are
proposed, generalizing and extending those presented in literature for user
equilibrium. Conditions for stability of both fixed-points and equilibrium
states are formulated by making use of results from non-linear dynamic
system theory. Moreover, it is possible to devise a new family of "dynamic"
algorithms which simulate the system convergence to a fixed-point in order
to obtain an equivalent equilibrium state, as opposed to conventional
"optimization" algorithms. In this case the fixed-point stability analysis can
be viewed as a convergence analysis for the so specified algorithms.

Conditions for stochastic process regularity ensuring, among other
things, existence and uniqueness of a stationary probability distribution of
system states are proposed. These conditions generalize and extend results
presented in literature to a wider class of possible dynamic models.
Relationship between a deterministic process, together with corresponding
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fixed-points or equilibrium states, and stochastic probability distribution are
also briefly addressed.

Then, both deterministic and stochastic process models for within-day
dynamic traffic assignment are discussed, and a consistent formulations of
within-day dynamic equiltbrium is described. Demand models including
departure time choice as v-ell as path choice are briefly discussed.

As already noted the main difference between within-day static and
dynamic models is relative to the supply side requiring the explicit and
consistent definitions of link and path flows and costs and relationships
among them. In particular the network loading (NL), that is the relationship
between path and link flows, is linear and defined by the network topology
only for within-day static networks, but highly non-linear for within-day
dynamic networks. Several approaches have been proposed in literature for
the solution of the dynamic network loading (DNL), and some of them will be
briefly discussed and compared in the tutorial.
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Intermodal Network Design

H. Donald Ratliff
UPS Professor - Georgia Tech
Logistics Engineering Center Director - Georgia Tech
Chairman & CEO - CAPS LOGISTICS

Introduction

Intermodal moveéments have the property that they use at least two different
transportation vehicles in moving from origin to destination. Often the vehicles are
fundamentally different. For example, the shipment of containers from Japan to Atlanta
utilizes a combination of truck, train and ship. However, we also consider movements
which use two vehicles of same type as intermodal movements. An example is a supplier
of parts in Atlanta shipping truck loads of parts to “pooling” points in California from
which they are delivered on different trucks in less-than-truck loads to the CUStOImeTs.

The two examples above are representative of the complexity “extremes” of intermodal
networks with pooling operations representing the simplest and ocean shipping the most
complex.

A defining characteristic of intermodal networks is that they contain a “core”
network with one or more “access” networks attached to it as illustrated in the figure

below,
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Intermodal network design problems are concerned with the location and
configuration of terminals where transfers between vehicles occur and the location and
configuration of channels connecting these terminals. The location of terminals and
channels are combinatorial optimization problems with differing mathematical structures
depending on the context. Coniiguration of terminals varies from the design of complex
sorting, storage and retrieval operations at container seaports to simple truck loading at
pooling points. Configuration of channels varies from the design of schedules and routes
for intermodal trains and container ships in ocean shipping to the specification of number
of trucks required for the truck load part of a pooling operation.

Decision technology

In order for decision technology to have a really significant impact on intermodal
network design it must combine optimization concepts and algorithims, integrated dara
analysis and graphical user interfaces in easy-to-use tailored systems. These systems
should increase the user’s understanding of the intermodal system as well as aid in
making specific decisions.

There are three software alternatives for decision technology: (1) custom
development, (2) off-the-shelf packages, and (3) modeling languages. The biggest
problems with custom development for intermodal network design are the expense to
build and the long development lead time. The diversity of issues makes it difficult to
build an off-the-shelf packages that will “fit” a reasonable number of in intermodal
network design issues. Therefore logistics modeling languages appear to be the only
avenue that will allow the necessary degree of tailoring and flexibility required for
widespread success.

A modeling language consists of three fundamental pieces: (1) context specific
data objects, (2) tools that operate on these objects, and (3) a macro language that can be
used to reasonably quickly combine these objects and tools into custom systems. For
example, the data objects used for spreadshest modeling languages such as EXCEL are:
cells, columns, and rows. Spreadsheet modeling languages include tools such as: select
columns, insert column, surn data in a column, plot bar-chart, etc.

Logistics modeling languages to adequately address intermodal network design
problems require a richer set of data objects such as maps, terminals, channels, networks,
vehicles, routes, shipments, etc. Such languages also require a richer set of tools
including draw map, construct network, find route, optimize flow, locate terminal, etc.
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Optimization tools

Optimization concepts and algorithms as well as “optimization based” heuristics
are critical to good intermodal network design. However, they must compliment rather
than replace the ability of the human decision maker. The focus here will be on the how
to develop the optimization elements 50 that they have both the speed and structure to be
complimentary.

There are two places in the decision process where optimization is particularly
jmportant: the generation of alternative network configurations (e.g., Which ports should
we use?) and the evaluation of each configuration (e.g., Which freight shoutd flow
through each port?). For some cases the evaluation problem can be adequately
represented by a model that we can efficiently solve, such as a minimum coSst flow
problem. For these cases it is practical to at least consider optimization over the different
configurations. When the evaluation problem is itself sufficiently difficult, then we are
forced to consider only heuristics. In the latter case it is particularly important that the
system have good interactive capability to allow the user to significantly influence the
solutions considered.

Binomial tree search: Decisions regarding where to have terminals and how to link these
terminals are naturally posed as combinatorial optimization problems. Most

optimization approaches involve a partial “tree search” over the solution space. By
organizing the decisions in 2 hinomial tree, the user has greater control over the solutions
being examined. A binomial tree search (illustrated in the figure below) uses an ordering
of the decision variables to determine the best solution considering oaly variable {1} then
the best solution using variables {1,2} etc. This is important when the user has some
decision preference which is cannot easily be quantified and provides more information
when the search is terminated before optimom.
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Submodular set functions: An importation class of intermodal network design problems
have an “independence” property among location decisions that allow them to be posed in
terms of submodular set functions. This property allows some very efficient pruning of
the binomial tree. It also allows the tree search to effectively utilize any solution that the
user may have generated as a starting place. Finally, problems with this property allow a
much more attractive class of hsuristics than those without the property. These issues
will be discussed together with their impact on computation.

Transportation for the 1996 Olympic Games

Design of the spectator transportation system for the 1996 Olympic Games in
Atlanta provides an unusual and interesting intermodal network design problem. While
perhaps an extreme case, it is illustrative of some of the practical problems that must be
overcome in making our technology actually work. These issues together with the
technology being used to address them will be discussed.
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“INFORMA'T'ION TECHNOLOGY IMPLICATIONS FOR TRANSPORT
OPERATIONS RESEARCH"

J.Barcelé, Dept. d'Estadfstica i Investigacié Operativa

Universitat Politéenicy de Catalunya

The emerging applications of the Advanced Road Tramsport Telematic
Technologies mainly address sevoral opcrational arcas: Demand
Management, Travel and Information Systems, Integrated Urban Traffic
Management Systems, Integrated Inter-Urban Traffic Management
Systems, and so one. The development and implementation of such
systems has prompted in recent years quite interesting research
problems both from the modelling point of view and from the
requirement of developing fast and efficient algorithms to solve these
models.

To build these modcls a good understanding of the interactions that hold
in a transportation systems is required, as well as a way of modelling
them representing such interactions dymamically. Practical methods of
measuring the dregree of change in network traffic flows, real-time
identification of imbalance situations in the use of the available capacity,
decision models to determine the adequate strategies, models to assess
properly the impact of the management strategies, and so one, are only
somc cxamples of thec above mentioned modelling wud algorithmic
developments required by systems using the new technologies.

Among such systems Travel and Information Systems, mainly in the
domain of the in-car information systems, represent the paradigm of
Telematic Application. The design and assessment of such systems is an
interesting challenge for the operation researcher. How to estimate and
forecast the evolution of network conditions, the dynamic identification
of the Dbest roules, the saumplig procedures from floating car daia
resulling in the best estimates with less communications overheads, the
assessment of the expected benefits, etc. arc only a few examples of that
assertion.

This paper will describe the general architecture of Travel and
Information Systems, identifying the modelling and algorithmic
requirements, and presenting a survey of the main developments in
recent years, specially in the scope of the European Research and
Development Programmes.
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Recent Developments in Transportation Demand Modeling

: Moshe Ben-Akiva
Department of Civil and Environmental Engineering

Massachusetts Institute of Technology
Cambridge, USA

Emerging issues in transportation such as congestion pricing, telecommuting,
traveler information systems, land use and environmental impacts require new
developments in travel demand models which is the subject of this tutorial. The
emphasis of the tutorial is on developments in disaggregate travel demand
model systems in the last decade. Disaggregate models are calibrated on
individual decision-maker data. These models explicitly take into account the
choice processes the individual decision-maker undergoes that lead to travel
demand.

Discrete choice models form the heart of such disaggregate model systems.

The tutorial will revolve around three themes:

1) Discrete choice models, especially the Multinomial Logit Model (MNL), have
been widely used for the last 25 years. Motivated by the availability of cheaper
and high powered computing, substantial developments have been made in
discrete choice models, both in the econometric techniques and estimation
methods adopted. Some of these developments include estimation methods for
the Multinomial Probit Model and a new class of models known as Latent Class
Choice Models.

2) The availability of alternative data sources for demand model estimation, such
as revealed preferences and stated preferences, has catalyzed the development of
econometric methods which explicitly capitalize on the advantages and correct
for the disadvantages of alternative data sources. Specifically, combined Revealed
Preference (RP) and Stated Preference (SP) model exploit advantages of both RP
data and SP data, and improve on the accuracy of parameter estimates

3) Existing travel demand model systems do not capture adequately latent
demand and timing decisions. They also have limited interdependencies among
trip purposes, duration, mode, destination, etc. To overcome such deficiencies,
an activity and travel model system which explicitly acoounts for such
interpendencies will be presented.
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Infinite Dimensional Variational Inequalities
and
Dynamic Network Disequilibrium Modeling

Terry L. Friesz
George Mason University

David II. Bernstein
Massachusctts Institute of Technology

Abstract

In this paper we explain the importance of modeling disequilib-
rium flow patterns occurring on nctworks, with special ernphasis on
automobile networks and Lhe role of information technology. We show
how clementary notions of disequilibrium, whether abstract, physical
or economic in nature, give rise to an adjustinent process express-
ible as a dynamical system, We comment that when such a system
is autonomous its stendy states can be given the traditional finite di
mensional variational inequality/fixed point representations common
to static network equilibria. Beyond this, and unique to our work, we
show that if the discquilibriura dynamical system 1s nonautononmious
it may tend toward moving or dynamic (instead of stalic) network
cquilibria expressible as infinite dimensional variational inequalities.

Using concepts of fast and slow dynamic systems, we shiow how day-
to-day and within-day aspects of automobile travel decision making can
be combined to yield a nonazutonomous dynainical system with the
mathematical propertics reviewed previously. We introduce &XI0MS
for a proper predictive model of urban network flows which integrates
both day-to-day and within-day considerations and postulate one such
model for further study.

In particular we show that autoponous traffic network disequi-
librium models based on extensions of the tatonunement paradigm of
microeconomic theary are globally asymptotically stable for plausible
regularity conditions using Lyapuunov stabilily theory. Nonautonomous
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versions of these models, reflecting combined departure time and route
choice decisions, sre evaluated to determine whether they produce
trajectories which are attracted, not to single steady state, but to a
bounded volume of the appropriate phase space using a stability the-
ory based on average Lyapunov functions. Such stability, historically

referred to as stability in the sense of Lagrange, is discussed with re-
gard to its implications for traflic inanagement. Notably such stability
resulls admit the possibility of so-called strange atlractors.

We then present the results of a variety of numerical experiments in
which we search, usiug plausible effective cost operators and demand
histories, for interesting dynamic phenomena. These experiments will
not be completed before April 1094,
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REAL-TIME ASSIGNMENT AND ROUTE GUIDANCE IN
CONGESTED NETWORKS WITH MULTIPLE USER
INFORMATION AVAILABILITY CLASSES

Hani S. Mahmassani
Department of Civil Engineering
The University of Texas at Austin

Austin, TX 78712, U.S.A.

Srinivas Peeta
Department of Civil Engineering
Purdue University
W. Lafayette, IN 47907, U.S.A.

Ta-Yin Hu
Athanasios Ziliaskopoulos
Department of Civil Engineering
The University of Texas at Austin
Austin, TX 78712
U.S.A.

Even under the most optimistic market penetration scenarios over the next decade,
only a fraction of all vehicles in a network are expected to be equipped with in-vehicle
electronic route guidance systems. Furthermore, equipped drivers may possess different
information reception capabilities, or have access to different types of information. Drivers
may also follow different behavior rules: equipped drivers may comply with prescribed or
suggested routes, others will make their own decisions based on current or predicted

conditions, and yet others may behave in a contrarian manner.

This paper addresses the problem faced by a central controller seeking to optimize
overall network performance through the provision of real-time routing information to
equipped motorists, taking into account different user classes in terms of information
availability, information supply strategy, and response behavior. In particular, four user
classes are incorporated in the formulation: 1) equipped drivers who follow prescribed
system optimal routes; 2) equipped drivers who follow user optimum routes; 3) equipped
drivers who follow a boundedly-rational switching rule in response to descriptive
information on prevailing conditions; and 4) non-equipped drivers who follow externally
specified paths, which may be historically known or solved for exogenously. However,
the controller does not have a priori knowledge of the time-dependent O-D trip desires for
users in each of these four classes over the whole duration of the planning horizon.
Instead, the controller has reliable information of the demands only for a short interval into
the future, and only historical information (or forecasts based on such information) for the
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remainder of the period of interest. For this reason, route assignmnet is performed on a
quasi real-time basis, reflecting new information as it becomes available. A rolling horizon

formulation and solution approach has been developed for this purpose.

Within the rolling horizon framework, the formulation seeks a time-dependent
traffic assignment which provides the number of vehicles of each class on the network
links and paths. While a solution is obtained for the whole planning stage, the routing
information is implemented only for a short interval into the future (roll period); the
problem is solved again for the next stage, starting at the end of the previous roll period. A
simulation-based algorithm is presented to solve the problem at each stage, recognizing the
interconnection between stages. The algorithm extends previous work by the authors for
single-class time-dependent assignment. The DYNASMART simulation model is used to
evaluate any particular path assignment pattern and provide the information necessary to
guide the search to the solution satisfying the desired conditions. The interconnection
between stages gives rise to unique challenges in terms of ensuring faithful simulation of
the traffic system and correctly capturing-the dynamics of traffic routing through the
network. The algorithm and associated simulation capabilities have been implemented in

computer code and tested.

In addition to describing the formulation and solution procedure, the paper reports
on the results of several numerical experimenst on test as well as actual traffic networks.
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An Exact Algorithm for the
Vehicle Routing Problem
with Backhauls

Paolo Toth, Daniele Vigo

D.E.LS. - Universitd di Bologna
Viale Risorgimento, 2 - 40136 Bologna - Italy

We consider the Vehicle Routing Problem with Backhauls (VRPB), also known
as Linehaul-Backhaul Problem, as an extension of the Capacitated VRP in which the
customer set is partitioned into two subsets. The first subset contains the Linehaul
customers, each of which requires a given quantity of product to be delivered. The
second subset contains the Backhaul customers, where a given quantity of inbound
product must be picked up.

This customer partition is extremely frequent in practical situations. A common
example is represented by the grocery industry, where supermarkets and shops are
the Linehaul customers, and grocery suppliers are the Backhaul customers. In recent
years it has been widely recognized that in this mixed distribution/collection context
a significant saving in terms of transportation costs can be achieved by visiting
Backhaul customers in distribution routes (see, e.g., Golden et al. [4]).

The VRPB then calls for determination of a set of vehicle routes visiting all
customers such that: (i) for each route the total load associated to Linehaul and
Backhaul customers does not exceed, separately, vehicle capacity; (ii) in each route
the Backhaul customers are visited after all Linehaul customers; (iii) the total num-
ber of vehicles used and the total traveled distance are minimized. Precedence
constraint (ii) is motivated by the fact that in many practical applications Line-
haul customers have a higher priority. Moreover vehicles are often rearloaded, hence
the on-board load rearrangement required by a “mixed” service is difficult, or even
impossible, to carry out at customer locations.

More precisely, VPRB can be formulated as the following graph theory problem.
Let G' = (V',A’) be a complete undirected graph, with vertex set V' .= {0} U
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{1,...,n}u{n+1,...,n+m}. Subsets L={1,...,n},and B= {n+1,...,n+m},
correspond to Linehaul and Backhaul customer sets, respectively. A nonnegative
quantity, d;, of product to be delivered or collected is associated with each vertex
of L U B. Vertex 0 corresponds to the Depot (with a fictitious demand do = 0),
in which K identical vehicles with a given capacity D are stationed. Let ci; be the
nonnegative cost associated with arc (3,5) € 4, with ¢; = ¢j; for each 1,5 € V' such
that i # j, and ¢;; = +oo for each i € V'. VRPB then consists of finding a min-cost

collection of simple circuits (vehicle routes) such that:

(i) each circuit visits vertex 0;
(ii) each vertex j € V'\ {0} is visited by exactly one circuit;

(iii) the sum of the demands of the Linehaul and Backhaul vertices visited by a

circuit does not exceed, separately, vehicle capacity, D;
(iv) in each circuit all deliveries must precede any pickup;
(v) each vehicle can perform at most one circuit;

(vi) the number of circuits (i.e. vehicles used) is minimum.

Observe that precedence constraint (iv) introduces an implicit orientation of
the “mixed” vehicle routes, i.e. routes which visit both Linehaul and Backhaul
customers. For the sake of simplicity in the following we assume, without loss
of generality, that K, minimum number of vehicles needed to serve all Linehaul
customers, is greater than or equal to Kp, minimum number of vehicles needed to
serve ail Backhaul customers. Indeed, where K < Kp, it is possible to solve the
problem by building an equivalent instance obtained by exchanging subsets L and B.
Because of the symmetry of the cost matrix, the solution to the original problem with
K; < Kp can then be obtained by reversing orientation of the optimal vehicle routes.
In view of requirements (v) and (vi), and in order to ensure feasibility, we also assume
that X (number of available vehicles) is equal to the minimum number of vehicles
needed to serve all customers. In our case we have K = max{K.,Ks} = KL.

VRPB is known to be NP-hard (in the strong sense), since it generalizes the
well-known . Capacitated Vehicle Routing Problem, arising when B = 0. Heuristic
algorithms for the solution of VRPB have been proposed by Deif and Bodin [2],
Casco, Golden and Wasil [1], Goetschalckx and Jacobs-Blecha [3], and Toth and
Vigo [5]. An exact set-covering based algorithm for the special case of VRPB in
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which the number of customers of each type in a circuit is not greater than 4, has
been proposed by Yano et al. [6].

In the following we present a new integer linear programming model for VRPB,
by viewing it as an asymmetric problem. Let us define Lo := L U {0} and Bo :=
B U {0}. Let G = (V, A) be a directed graph obtained from G' by defining V =V’
and A = {(3,7) : 4,5 € Lo} U{(4,5) : € L,j € BYU{(4,5) : i € B,j € Bo}. A cost
cij = Ci; (with ¢;; = +oo for each i € V) is associated with each arc (7,5) € A. In

other words this set contains:
— arcs from Linehaul vertices to Linehaul vertices and the depot, and vice-versa;
— arcs from Linehaul vertices to Backhaul vertices;

— arcs from Backhaul vertices to Backhaul vertices and the depot;

Indeed, note that no arc from a Backhaul to a Linehaul customer or from the depot
to a Backhaul customer can belong to a feasible solution to VRPB, either because
of the precedence constraint or the assumption Ki > Kp.

For each § C L and each S C B, let o(S) be the minimum number of vehicles
needed to serve all the customers in S, i.e. the optimal solution value of the bin
packing problem with item set S and bin capacity equal to D. For each i € V Tet
us also define T} = {j : (i,7) € A} (forward star of i) and 7 = {j : (4,3) € A}
(backward star of i). A new integer linear programming formulation of VRPB is
then:

(P) v(P) = min Z Ciity (1)

(1,7)€A
subject to
Z z;; =1 foreachje V\{0}; (2)
iery
S z; =1 foreachie V) {0} (3)
jer
Z zo = Ki; ®)
iery
Z Zo; = KL; (5)
jerg
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_ - for each SCL,S#0;
y, X, m= >, X =iz alS) and for each S C B,S # 0; (6)

iES jer?\s JES iel7\S

z;; € {0,1} foreachi,j€V; (7

where z;; = 1 if and only if arc (3,j) € A is in the optimal solution. Equations
(2)-(5) impose in-degree and out-degree constraints, while the so-called capacity cut
contraints (6) impose both the connection and the capacity constraints.

We present a new lagrangian lower bound for VRPB based on projection of
the feasible solutions space, which leads to determination of Shortest Spanning Ar-
borescences with fixed in-degree or out-degree at the Depot. The lagrangian relax-
ation is then stregthened by adding valid inequalities, in a cutting-plane fashion. A
branch-and-bound algorithm which makes use of reduction procedures, dominance
criteria, feasibility checks, and heuristic algorithms is also presented. Extensive
computational tests on several problem classes proposed in the literature show the

effectiveness of the proposed approach.
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Extended abstract

The purpose of this paper is to propose a new heuristic method for the Vehicle
Routing Problem with Backhauls (VRPB) defined as follows. Let G=(V,E) be a
graph where V={vy,...,vp} is the vertex set and E={(v,v)): i#], vvie V} is the edge set.
We assume that all edges are undirected so that (v;,v)) is only defined for i<j. The
vertex set is partitioned into V={{vo},L,B} where vq is a depot at which m identical
vehicles are based, L corresponds to linehaul customers and B to backhaul
customers. A non-negative demand q; is associated with each vertex v; (q},=0). With
E is associated a cost matrix C=(c;)) representing travel costs, distances or travel
times. The VRPB consists of determining a set of m vehicle routes of least cost in

such a way that

—

) each route starts and ends at the depot

) every vertex of V\{vg} is visited exactly once by exactly one vehicle

) the total demand of any route does not exceed the vehicle capacity Q

) on any route, all backhaul customers are visited contiguously after all linehaul

W N

customers.

The Traveling Salesman Problem with Backhauls (TSPB) is a special case of the
VRPB where only one vehicle (m=1) is available.
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Relatively little previous research has been done on the development of good
heuristics for the VRPB. Goetschalckx and Horsley (1986) have suggested an
approach based on spacefilling curves, while Deif and Bodin (1984), Golden,
Baker, Alfaro and Schaffer (1985) and Casco, Golden and Wasil (1988) use a
modification of the Clarke and Wright savings algorithm to solve the VRPB.
Groetschalckx and Jacobs-Blecha (1989) compare various basic heuristic
strategies. The paper by Gélinas, Desrochers, Desrosiers and Solomon (1992) is
different in that it describes an exact algorithm and the problem also incorporates
time window constraints. In our opinion, the current state of knowledge on the
VRPB is still unsatisfactory and more powerful algorithms should be designed. For
example, when applied to the standard Vehicle Routing Problem (VRP), neither
simple insertion procedures nor the Clarke and Wright algorithm rank among the
best heuristics. Indeed, a recent comparison of the best known VRP heuristics has
been done by the authors (1992) and it is shown that the Clarke and Wright
heuristic is significantly worse than the best available algorithms.

We describe a tabu search procedure for the VRPB. It is based on three heuristic
procedures developed by the authors for the TSPB and the VRP. The first
procedure, GENI, is a generalized insertion routine. It is less myopic but more
powerful than standard insertion procedures in that a vertex may only be inserted
into a route containing one of its closest neighbors, and every insertion is executed
simultaneously with a local reoptimization of the current tour. US is a post-
optimization procedure that successively removes and reinserts every vertex, using
GENI. The US procedure has produced highly satisfactory results on the TSP,
better than Or-opt, for example. The combination of GENI and US yields a powerful
two-phase heuristic for the TSP. These two procedures have been applied to the
TSPB in the following way :
1) first, GENIUS is applied seperately to the vertices of L and to those of B
2) then, these two tours are combined in the following way. Consider v'e{vjvj}
and v"e {vk, v}, where (v;,vj) is an edge of the first tour and (vk,Vi) is an edge of
the second tour. Let w'={vi,v\{v} and w"={vg,v}\{v"'}. Remove (vi,vj) and
(vi,V); introduce (V',v"), (vo,w') and (vo,w"). Select the least cost tour over all
combinations {v',v"}.
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This procedure has produced near-optimal solutions within modest execution times
on randomly generated TSPB instances.

The best available algorithms for the VRP are all based on improvement methods
such as simulated annealing and tabu search. These are search schemes in which
successive neighbours of a solution are examined and the objective is allowed to
deteriorate in order to avoid local minima. The TABUROUTE algorithm is such an
algorithm. It has been developed by the authors in 1992 and is an adaptation of the
tabu search technique to the VRP. The sequence of adjacent solutions is obtained
by repeatedly removing a customer from its current route and reinserting it into
another route. This is done by means of the procedures GENI and US.

We propose a new tabu search heuristic method for the VRPB which is based on a
similar approach as TABUROUTE. At each iteration one customer v is moved from
its current route rq to another route ro. Customer v is inserted into ro by means of
the method based on GENI and US for the TSPB. The reverse procedure is applied
for the removal of v from ry.

Numerical tests on a set of benchmark problems indicate that the new proposed
procedure outperforms the best existing heuristic methods for the VRPB.
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1, Introduction;

in this paper we develop sorne tools for designing fair zonss in public transportstion
networks. A zone in such a network Is a set of stations which are treated 22 a unit as far
as the fares for the passengers are concerned: The zone tariff is only dependent on the
starting and ending zones of thelr travel. A fair zoning is one where the zone tariff is as
closs as possible to the distance tarff which relates the fare 1o the actual distance of a
customer drip. In particular, the goal of a fair zone design is that nelther the public
transporiation company nor the customer will have major disadvantages in the transition
from distance tariff to zone tariff.

We will consider three objective functions which model this goal, If the zones are fixed we
will show how te choose the tariffz in order to minlmize the respective objectlve functions,
This result will be combined with Gready heuristics to deslgn simultaneously zones and the
corresponding tariffs. For graphs with special structures we give an integer programming
formuiation which s based on a connectivity property of the zones. The compexity status
of the general zoning problem has as yet not been dlarified, but it Is shown that a closely
related problem, the Interior 2oning probiem, is NP hard.

2. Denctation:
We conslder a public transportation system modeled by a graph G={V,E). Tha nodes &V
represent the stations and the edges e=(1))EE indicate that the two stations | and | are

connected by at least one line between | and |. We assumse that V has n nodes and m

° Partially supported by a grant of the Deutsche Forschungsgemeinschaft
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edges. Each are (i) has assoclated with it a nonnegative value gy representing the length
of the diract connection between | and |. We assume that the graph G is conrected such
that the distance matrix D= (d‘l) is well-deflned.

In the case of distanca tariffs we assume that the ticket price for going from station | o
station | in the pubilc transportation network is proportional to dj. Although this type of tarlff
is @ fair one, it is not very convenient. In order to find out & specific tcket price, the
distance information needs o be avallable. This ls feasible if the number of stations Is
small. Ctherwiss, this tarlff system is too complex and not transparent enough for the
customers,

Therefors, public transportation companies consider the imroductien of zone tariifs:
Within each of tha zonss a fixed tickst price Is paid. For travel between zenes a tariff is
charged which is related to the "distance” of the zones instead of the distance bstween the
stations. Obvlously, we have to be mors precise in describing what we mean by "zones®
and "distance” of zones.

From a graph theorstical point of view, zoning is a partitioning of the node set V into
disjoint node sets V4.,V Subsequently, we call these subssls zonss. We interpret
sach of the zones as node in the compiete graph G' = (V',E) ,i.8., V' = {V4,...V} and E
={ (V,ViQ ! Lk =1,..,L}. (Notice that we include loops (Vi,Vp In @', They will be nesded In
our subsequent model.) If we define zons costs ¢'(V;Vyy forall 1k =1,...L we can
compute the LxL zone distance matrix

D= {dVVig)

where d'(V},Vy) s the length of a shortest path from V| to Vi in G' with respect to edge
cests ¢'. Since G' is a complete graph we may assume In the following that ¢'(V},Vg) =
d'(V}, Vi for all [ k=1,...,L and that the matrix C'= D' satlsfles the triangle inequality

SV Vi = C(VIVg) + (Vg Vi) for allfgk = 1,...L with lak.

Zones and zone distances are usad ta represent distances batwean statlons and thus to
simplify the tariff system. In the zone tariff the ticket price for golng from statlon i€V to
station JEV) with is] is given by  zjj := d'{V},VyJ. For i=] we define 2 := 0. Obviously, the
zone tariff is highly depending on the choice of the zones V...,V and the zone cosis
ViV
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for the Zone Desl

We propose the following three objective functions for measuring fairnass in going from
the distanoe tariff based on G o the zone tarlff based on G

(2.1) bmax(G,G') = mgv”dij'z‘”

(2.2) b1(Q,a) =12 3 dj-z)
EY

23 bp(G.G) =12 3 (d-z)?
ev

Using the definitlon of objective functions (2.1) - (2.3) we can formulate the zone design
prablem as follows:;

Find a zone partitioning V4.....V_ and costs ¢'(V},Vi) such that b(@,@') is minimum
(b & {bmax.b1.b2}).

The next result shows that we can concentrate on the zone partitloning of G, sincs the
optimal zone costs ars very simple ta campute once we have shosen the zones.

Theorem 2.1:
Let Vy,...,V| be &zone pastitioning of G,
in order to minimize by ax(G, &), by(G.@), and b2(G,G) we choose

3) CI(V!,Vk) = Cmax(vlrvk) = 1/2 ( E\r}?.?ekadq + min dij );

}ethvkl l")
b) (M, Vi =t e4{V}, Vi) = EVT%\!/:I‘H dj, and
dy
2 or Ik
IAIA
¢) ¢'(V, Vi =i ca(V}, Vi) = srespectvely.
2 Z,d;
L/
forl=k
Vi qvl-0
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An immediats consequence of Theorem 2.1 is the fallowing resuft.

Corollary 2.2;
Let V4,...,V|_ be a zone partitioning of G and let ¢'(V|, Vi) be any zone cost. Then
1 e = . % di
& bmax(®.G) = 1/2 st Vi Vil o v Vi % )ev,,rfé'\’/.'k, i i
b) Let
Vit 1= {d; ¢ 1€V, i€V, dif edian d;} and
kit = {dj 2 1BVye IEV), O = MECRR i}

Vi = {dj : IEVK, JEV), djj = }é’lve‘dﬁlwk dj}. Then
b(GGQ) =12 3 ( Edﬁ- Edg;)

K=t b 9EVT dEVT
0 ba(@@) = 1/2 3, Var{dj: €V JEVY, =]}
lk=1,...,L

All Inequalities hold with equallty If the 20me costs are chosen according to
Theorem 2.1, respectively.

4, Gready Heurlatlc for the Zone Design Preoblem

Greedy heuristics start with n zonss, where each zone corresponds to a single node and
combine Heratively two zones to a new one. After updating the graph this process is
continued until the planned number of zones is aftalned.

The goal in each iteration is to achieve a minimal increase in the objective function
b({@,Q). For this purpose we cambins iwo zones X and Y which yleld 2 minimal increase
#X.Y) In the objective function. The definition of the function f(XY) is dapending on the
choice of the objactive function b(G,G).

Depending on the chosen objective introduced In Section 3 different strategies for good
functions #0XY) are used In the reeulting versions of the Greedy algorithm. We appilied
these heurlstics to data of a German transportation company and compared them with
clustering algorithms from literature. The results indicate that the Greedy approach I8
preferable to the latter algorithms. We will report on these resulis.

.Com
As yet, the complexity status of the general zone planning problem is not clear. For the
case where only the Interior zoning tariffs are considered, 1.e. the deviation of distance and
sone tariffe only within each of the zones, it Is proved that the problem of finding = fair
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zone planning is NP-hard for all three choices of objective functions introduced in Section
2.

g.Integer Programming Formulation

We consider binary decision varlables hy defined by hy=1 Iff edge k of G Is contalned In
zone |. In the case where the graph G is a line graph, we can prove connectivity
propertles of the optimal zone planning which lead o an Integer programming formulation
of the zone planning problem using appropriately defined cost vectors el

min {max {cll h : i< }}
subject to

Shy =1 forall 1
k=1

m mh
2n-m

By + b = P j =1

Consequances of this 1P formulafion including exact solulion approaches will bs
discussed.

Z. Conclusion and Further Research

While the zone tariff pressntad in this paper is far less compiex than the distance tariff, it
may nevertheless be desirable to simplify it even further by requiring that the ticket price is
only depending on the number of crossed zones, independent on where these zones are
iocated. Far this problem the eemputation of approximate selutions by goed hauristics and
the derlvation of exact algorithms are under research,

The modsis of this paper neglect two important issues: The frequency of usage and the
impact of tariff changee on this frequence. While the former san be incorperated Into our
model by adding muitipliers my; to each of the terms [y -zl and (dy- 211)2, respectively,
the conslderation of passenger reactlons o tarff changes will require a compistely
different madel. It should be noted however that the goal of our approach Is to minimze the
change in ticket prices such that this effect is avoided as much as possible.
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Regional mass transit assignment with resource constraints(™

Paolo Carraresi™), Federico Malucelli, Stefano Pallottino™™)

Abstract

A mass transit system in a regional area is considered. In this paper the problem of improving
the quality of the service considering passengers assignment Is studied. A model to improve the
effectiveness of the system without worsening the cost (vehicles and duties) and the traffic
assignment is proposed. A new definition of passenger assignment (o support the proposed
model is given.

1. Introduction

In this paper we will consider a mass transit system in a regional area where possibly both road
and rail transportation may be used by commuters. Unlike the urban situation [10], in a regional
mass transit system line frequencies are relatively low and trips can be considered as singular
entities. We will assume that all the trips run on time according to a given time-table which is
known by users; moreover, the vehicles have a fixed capacity (number of seats) which cannot be
exceeded. In the literature, the problem of choosing jointly departure time and route in a mass
transit system has been studied without explicitly considering the capacity constraints, hence
without considering the deriving flow priority requirements [2, 6, 11-13].

Assuming that an assignment of passengers to vehicles is known, the first problem we will
consider is to improve the effectiveness of the mass transit system. To this aim, a model which
minimizes passengers total waiting time by modifying the departure times of the trips is
proposed. Constraints are imposed in such a way that changing the departure time of the trips
will maintain the feasibility of vehicles and drivers scheduling, and will guarantee that the
starting assignment is still proper. For these reasons, such kind of model is called conservative
and must be considered as first step towards the study of a general framework where resource
constraints are explicitly handled and the goal is to obtain a new assignment perceived by the
users to be not worse than the previous one. Under quite reasonable hypotheses, the conservative
problem can be solved by means of a network flow algorithm, while considering the general case
it turns out that the problem be modelled as a Quadratic Semi-Assignment.

The second problem we consider is to define assignments which are suitable inputs for the
conservative model previously introduced. Here we will propose two alternative definitions of
assignment: in the first one the capacity constraints are taken into account explicitly and a so
called e-feasible flow is considered |11, 12|, while in the second one these constraints are

substituted by continuous penalty functions in order to find a user equilibrium assignment.

(*)  This work has been supported by grants n. 93.01799.PF74, 93.01669.PF74 of Progetto Finalizzato Trasporti
Due, Italian National Research Council (CNR).

(") Professor Paolo Carrarcsi dicd unexpectedly on March 5, 1994, At the time ol his death this paper was
substantially completed. Doing the {inal revision, the other two authors found inspiration in the suggestions,
ideas and all they could leam after so many ycars of common work.

(**) Department of Computer Scicnce, University of Pisa, 40, Corso ltalia, 1-56125 Pisa, ltaly
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The paper is organized as follows. In section 2 the transit service is described and the basic
notation is introduced. The notion of assignment is presented in section 3. Section 4 is devoted to
the conservative model to improve of the effectiveness of the transit system. In section 5 new

definitions of assignment are discussed. The final section contains some concluding remarks.

2. The regional mass transit service

Let us focus now on the main characteristics of the service perceived by the users.

The service is described in terms of both bus and rail lines. A [ine connects a sequence of
geographical points, called szops, where passengers can board and alight. At least one trip is
associated to each line.

A trip is a run of a vehicle from the starting terminal to the ending terminal of a line according to
a time-table which gives the arrival and departure times at each stop of the line. We assume that
time-tables are known by passengers and that the service is regular, i.e. vehicles are on schedule
at each stop. Vehicles have a fixed capacity, usually given by the number of seats.

The demand is located in ideal geographical points, called centroids, and it is described in terms
of passengers travelling between two centroids, called origin and destination. The demand for
each origin/destination (0/d) pair is partitioned into groups. The passengers of each group have
common socio-economic conditions and share either a common rarger time at the destination or
a common rarget time at the origin. A target time at the destination means that a passenger does
not want to arrive later than that time, while a target time at the origin means that a passenger
does not want to leave the origin before that time. In the following, we assume that the demand
is known, that is the number of passengers for each o/d pair and for each group is given.

A regional mass transit service can be described by two networks: a skerch network and a space-
rime network.

The nodes of the sketch network represent centroids or stops while the arcs can be distinguished
in in-vehicle arcs, connecting two consecutive stops on a line, and walking arcs, connecting, in
both directions, centroids and neighboring stops as well as stops which are located within
walking distance.

On the other hand, the space-time network (V,E) describes the transit service by representing
each trip separately. In practice, the space-time network does not describe only the lines
structure, but it considers also how trips unroll during the time.

Each node u of V corresponds to a pair w(u)=[i,f; | where i is a location (stop or centroid) and ;
is a time; u refers to an arrival to, or a departure from, location [ at time 7; .

In fig. 1, a sketch network and the corresponding space-time network is reported. The sketch
network describes a transit system with one origin o and two destinations dj and d three lines
(a, b and c), five stops and four walking arcs one of which connects stop 2 with stop 5, while the

space-time network describes one trip for each line.
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fig. 1

The set of arcs E can be partitioned as follows.

In-vehicle arcs E,.

An in-vehicle arc (u,v), where ()= [i,4;] and w(v) = [j,4], represents a portion of a trip
starting at location / at time £ and arriving at the next location j at time z; (e.g.
({1, 7:30],[2, 8:00]) in fig. 1). A capacity u, is given for each e€ E\. This capacity depends on
the vehicle running the corresponding trip.

Walking arcs E,,.

Walking arcs allow passengers to reach a stop starting from a centroid or another stop and
vice versa. In a walking arc (i,v), ()= [i,5] , o(v) = [/.j], where i, j represent stops or
centroids and 1; - 5 1s the walking time to get location j starting from location i at z; (e.g.
([2, 8:00],[5, 8:20]) in fig. 1).

- Boarding and alighting arcs E,,.

Boarding and alighting arcs represent passenger ingress to and egress from a vehicle,
respectively. A boarding arc («,v) connects the ending node of a walking arc to the starting
node of an in-vehicle arc. The locations referred by u and v are coincident, that is w()= [i, #;]
and ®(v) = [i, ;] and 1'; - ; represents the waiting time at the stop i (e.g. ([5, 8:201,[5, 8:30]) in
fig. 1). An alighting arc connects the ending node of an in-vehicle arc to the starting node of a
walking arc. Usually no time penalty is associated to passenger egress. In such a case
@()=w(v) which implies that the alighting arc is considered together with the walking arc
(e.g. ([2, 8:001,[5, 8:20]) in fig. 1).
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- Transfer arcs E,.
Transfer arcs connect nodes of different in-vehicle arcs and represent passenger transfer
between trips at a given stop. Obviously, a transfer arc (u,v) at stop I, W)= [i,5], o(v) =[i, 7';]
exists if the waiting time ¢ - 7; allows to transfer (e.g. ([2, 8:001,[2, 8:10]) in fig. 1).

- Waiting on board Ep.
A waiting on board arc (u,v) connects two consecutive in-vehicle arcs related to the same
trip; u and v refer to the same stop i, that is w(u)= [i, ;] and w(v) = [i, 2], and ¢'; - ¢; represents
the waiting time on board at stop i (e.g. ([2, 8:00],(2, 8:05]) in fig. 1).

Note that the space-time network is an acyclic graph.

3. Passenger assignment and e-feasible flow

In the following we will show that a passenger assignment can be described as a
multicommodity feasible flow on (V,E). Commodities correspond to groups of passengers with
the same o/d pair, sharing either a common target time Ty at the destination ¢ or a common target
time T, at the origin 0. We assume that for each group £ =1,..., K, only one of the two target
times defines a constraint. Hence in the pair (T,,T4) either T, =0 or T4 =+ee.

A feasible old path for the group k is a path on (V,E) from u to v, where ()= [0,l],
w(v) = [d, 1'4), 0 and d correspond to the origin und destination centroids of the group, 'y 2T, and
I'q <14.

Let Py denote the ser of feasible o/d paths for commodity, and Dy be the demand of commodity &
(i.e. the number of passengers of the group corresponding to commodity k) k=1,..., K. Moreover,
given any path p we will denote the number of passengers using p by hy, . Finally let Oep=1 if the
arc e belongs to the path p, and O otherwise.

Define a passenger assignment as a feasible multicommodity flow A =[h], pe Pg, k=1,..., K, on
(V,E), satisfying the demand and the arc capacities; the set £ of all feasible multicommodity

flows can be described as follows:

F={h:
2 hy=Dy, k=1,.... K,
pPE Py
K
Z 2 hplep < e, Y eeE,, 3.1
k=1pe P,
hPZO, V pePy, k=1,...,K}.

We assume that passengers of the same group behave in the same way when selecting a feasible
o/d path. Group behavior depends on a perceived or generalized cost of o/d paths.

The generalized cost of a path is a weighted function of the following components: in-vehicle
time, waiting time, walking distance, departure tardiness, arrival earliness, number of transfers,

trip fare, etc. Here we will consider two kinds of generalized cost.
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3.1 First generalized cost: weighted sum of trip time, waiting time and tardiness/earliness

The first kind of generalized cost, quite simple and widely used [4, 5,9, 10], is the weighted sum

of trip time, waiting time and tardiness/earliness with respect to the target times. This cost has

the following two components:

i) the difference between the target time and the departure time at the origin, if the target time
refers to the destination; or, symmetrically, the difference between the arrival time and the
target time, if the target time refers to the origin;

ii) the total waiting time spent in transfers.

Let ¢p be the generalized cost of path p and let Y be the cost of the minimum cost path for the

commodity k, that is ye=min{cp: p€ P}, k=1,..., K.

We assume that passengers of the same group perceive as equivalent two feasible o/d paths p and

g, Cp2cq, when the relative difference of the costs, (¢p —cq)/cq, is not greater than a given

relative tolerance £>0. We will assume that passengers of the same group select, among all

feasible paths with available capacity, that minimizing the generalized cost within the given
tolerance €.

We can define now an e-feasible flow as an assignment of all passengers to perceived minimum

cost paths only.

Definition 1
A passenger assignment A is an e-feasible flow if he F and the relative cost (¢p - Y)Yk of each

path p used by passengers of commodity & is less than or equal to €.

Let us denote by Py(e) the ser of all e-feusible paths for commodity , that is paths which are

perceived as equivalent to the minimum cost path:

PrE)={pe Pi: cp <Yk (1+€)}. 3:2)

32 Second generalized cost. differences with the ideal departure, restarting and arrival times
Here we consider a simplified passenger behavioral model. We define the ideal departure,
restarting and arriving times as the best times a passenger can select at any moment regardless
the actual seat availability on the vehicles. For example, consider a group of passengers having
target time at the destination: for this group of passengers the ideal departure time is the starting
time of the latest trip which allows them to arrive at the destination within the target time.
Consider now a group of passengers which arrives at a transfer place: for this group of
passengers and the considered stop, the ideal restarting time is the earliest departure time of a trip
which allows them to reach their destination within the target time.

For the groups of passengers having target time at the origin, the ideal arriving time is a
reasonable time they could expect to arrive at destination starting form the origin not before the
target time. The ideal departure time is the starting time of the earliest trip which allows

passengers to arrive at destination not later than the ideal arriving time. The ideal restarting time
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at each transfer place is the starting time of the carliest trip which allows passengers to arrive at

destination not later than the ideal arriving time.

Hence, for each group of passengers, we can associate 1o each node of a feasible path (origin,

transfer stops or destination) a value given by the difference with the ideal choice.

On the basis of the above definitions, we assume that passengers behave according to the

following rules:

- latest departure time for groups of passengers with target time at the destination: no
passenger will leave the origin earlier than necessary in order to reach the destination no later
than the target time;

- earliest departure rime for group of passengers with target time at the origin: no passenger
will deliberately delay the starting time at the origin;

- earliest restarting time for all the groups: at any transfer place no passenger will deliberately
delay the restarting time.

This model has been proposed in [11] where it is shown that these behavioral assumptions can be

ransformed into generalized costs of o/d paths.

Assuming this behavioral model, we define the indifference tolerance € as the maximum

difference with the ideal times at the origin, at the destination and at each transfer stop of the o/d

path. Note that, unlikely the other definition of € tolerance, in this case € is an absolute value.

As we did in the case of the first kind of generalized cost, given a tolerance €, Pi(€) denotes the

set of paths perceived equivalent by passengers of commodity & , that is the set of paths whose

starting times at the origin, at the transter stops and at the destination differ with the ideal times

by less than €.

3.3 Mathematical formulation

Let us suppose that a tolerance €>0 is given; this tolerance is a relative value if the first
generalized cost is considered, while it is an absolute value if the second kind of generalized cost
is used. It is well known that this value is difficult to estimate and it is somewhat arbitrary; in
fact that tolerance is closely related to the quality of service that passengers perceive and to their
travel experience. Nevertheless, for this moment we consider € as a value which really represents
the threshold of the indifference on the generalized costs; later, in section 5 we will characterize
this threshold.

Definition 2
A passenger assignment /1 is an g-feasible flow if he F and hp=0 if pe PR\Pi(E).
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By F(e) we will denote the ser of all efeasible flows:

F(e)={h:
2 hy=Dy, k=1,..., K,
PE P(&)
K
2 D hSy,Su.  Veck, (3.3)
k=1pe Pk(E)
h,20, V pePye), k=1,..., K}.

Hence, an assignment he F(g) can be obtained by solving a linear system where the number of
variables is the number of e-feasible paths. This means that determining whether F(e)=@ or a
feasible flow /ie F(g) exists can be done solving problem (3.3). As in real applications the
number of e-feasible paths is order of the cardinality of the set of arcs, solving (3.3) is a

relatively easy task.

4. Improving the effectiveness of the transit system: a conservative model

In this section we introduce a time-table design model which consider the definition of

generalized cost and the passenger behavior based on the earliest/latest departure times and

earliest restarting times rules (see section 3.2).

In the following, we assume that an e-feasible flow is given together with the vehicle and
drivers’ scheduling. A vehicle scheduling is specified by blocks, where a block is the sequence of
rips consecutively run by one vehicle. A drivers’ scheduling is a set of driver duties, where a
duty s a set of pieces of work satisfying union regulations. A piece of work is a continuous
driving period between two relief places, that is places where a driver substitution can occur. For
more details on vehicle and drivers' scheduling see [3]. Without loss of generality, in the
following we assume that there is at most one relief point between two trips. v
Our aim is to modify the trip departure times in order to minimize the total generalized cost in
such a way that the given assignment is still an e-feasible flow and the given vehicle and driver
scheduling are still feasible.

Now consider the problem of improving the effectiveness of the transit system. The problem can

be represented by means of a directed graph G=(N,4). Each node in N=(1,...,n} corresponds to a

trip, and the arc set is defined as the union of the following set of arcs (i.e. A=A]UA2UA3UAS).

Aq: there is an arc (i,j)e Ay iff there exists a non empty set of passengers transferring from trip {
to trip J, possibly also walking between two stops.

Ap: there is an arc (i) Az iff there exists a stop where a group of passengers splits between trips
i and j. In other words portions of trips i and j belong to alternative e-feasible paths used by
the same group.

Azt there is an arc (i,/)e A3 iff trips i and j are consecutive within the same vehicle block.

Ag: there is an arc (i j)e A4 iff there exists at least one duty where a piece of work on trip / is

followed by a piece of work on trip j.
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Note that A; and Ay are defined by the e-feasible flow on (V, E), while A3 and A4 depend on
vehicle and drivers’ scheduling, respectively.
Now consider 1o modify the departure times of the trips. Let 7; denote the amount of variation
related to trip i. Note that variables 7; are not restricted in sign: ;<0 means that trip ¢ is
anticipated, while 7;>0 means that trip / is delayed and m;=0 does not modify the current time-
table. .
Further on, we will show that the problem of minimizing the total generalized cost in such a way
that the given assignment is still an g-feasible flow and the given vehicle and drivers’ scheduling
are still feasible can be formulated as the following LP problem:
min Z Cil;
1
nj-niz Sij Vv (i,He A, 4.1)
LS m;<u; YV ieN.
Let us examine in detail the problem constraints.
Consider (i,j)e A;, that is there is at least one group of passengers which transfer from trip i to
wrip j at a given transfer stop. Let us denote by a; the arrival time of trip i, d; the departure time of
trip j, Tjj the transfer time (possibly including the walking time); then the waiting time is equal to
s}j where s}j =a; + 15~ ¢ <0.
To maintain the possibility of transfer from trip i to trip j, the new departure and arrival times
a'i=a;+n;and d’j=dj+mjmust satisfy the condition a’;+ 1; < d . This implies the following
constraints:

1 . 3
T2 Sij YV (ij)eAy.

Consider (ij)e Ap. One case is when there is at least one group of passengers which, at a given
node (either the origin or a transfer stop) board two different trips i and j whose departure times
d; and dj are such that -€ £ d; - d; < €. Note that if (i,))€ A2, also (j,i)e A2. In order to maintain the
g-feasibility of passengers assignment, the new departure times must satisfy the same conditions;
that is

—e+di-danj-niS£+d;-d_,-.

If we denote by 5;"] =-€ +d; - dj (£0) and by .\'77[: -€ +dj -d; (£0), we obtain the following

constraints:
T2 Sij V (ij)e Ay,
2 .
TE["T[‘/'Z Sji Y (/,I)E Az.

There is another case which induces a pair of arcs (i) and (j,i)e A2. Consider a group of
passengers with target time at the origin which splits on different paths; assume that there are at
least two different paths using final trips i and /, respectively, to reach the destination. According

to the e-feasibility we have -€ < g - ¢; < €. In analogous way to the previous case, defining
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sl.zj =-€ +4a; - ¢j (<0) and sjzl= -€ + «j - q; (20), in order to maintain the e-feasibility we must
impose:
2 s 3
T2 S V (i) Ay,
> 52 VY (j.ie A
T2 Sy (e As.

Consider (i,/)e A3, that is trip j follows immediately trip i in the scheduling of a vehicle. This
means that a;+ 61} < dj, where g; is the arrival time at the ending terminal of trip i, dj is the
departure time from the starting terminal of trxpj and §;; is the time due to the deadheading trip
between the two terminals. If we denote by s = SU +a; - dj (€0), the scheduling remains feasible
if the following constraints hold:

3 i
T2 Sij V (iy)e Az.

Consider (i,/)e A4, that is there is one duty where a piece of work on trip / follows immediately a
piece of work on trip j. This means that b;+ Pij < gj» where b; is the ending time of the piece of
work on trip . g; is the starting time of the piece of work on trip /, and pij is a spread time
between the two pieces of work. This time depends on possible union reﬂu]ations and on the
time needed to move between the relief points of trips i and j. If we denote by s = bit pij- g
(£0), to maintain the feasibility of duties the following constraints must hold:

-1 s?j. Y (iy)e Ag.
Finally let
slj—mdx{ ,(tJ)eA,,r —r Y (i))e A.

Time window constraints of problem (4.1) (i.e. l; £ m; <w;, Vie N) originate from target times at
the origin and/or destination for each group of passengers.

Firstly define /;, ie V. Let G; be the set of groups of passengers k having target time at the origin
and beginning the travel by boarding trip i. Then l is the smallest &; which allows passengers of
group £ to leave the origin not before the target time and to board trip i (possibly after walking to
the stop). Then /; is given by

li=max (1% ke G;) V ieN.

Analogously we can define w;, ie N. Let G'; be the set of groups of passengers k having target
time at the destination and ending the travel by alighting trip i. Then u/” 1s the largest m; which

allows passengers of group £ to alight trip i and reach the destination not later than the target
time (possibly after walking to the destination). Then u; is given by

u[=m1n{ul.,keGi} VY ieN.

Now let us detail the objective function min %; ¢;m;. Consider trip i. The coefficient ciis a
weighted sum of the number of passengers boarding trip i whose travel cost is affected by a
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variation on the departure time of trip i. Let us denote by o and B suitable non negative
coefficients that measure the perception of the gap with the ideal departure time at the origin and
with the ideal arriving time at the destination () and the gap with the ideal waiting time at
rransfer stops (j3).

Let us consider separately the set of groups of passengers having target time at the origin and
travelling on trip i, Ko and the set of groups of passengers having target time at the destination.
and travelling on trip i, Kd The perception of the variation T;. depends whether passengers board
trip i coming from the origin, or coming from another trip, or alight trip { to reach the
destination, or to transfer to another trip.

When a passenger of group  boards trip i coming from the origin, he/she perceives a variation
om; m his/her travel cost if keK while he/she perceives a variation -Oi; in his/her travel cost if
ke K In fact in the first case, dccordm«r 10 the earliest departure time rule, the gap with the ideal
depdrture time at the origin increases with 7; while in the second case, according to the latest
departure time rule, this gap decreases when 7; increases. When a passenger of group k boards
trip i coming from another trip, he/she perceives u variation B in his/her travel cost; in fact the
waiting time for trip / increases with ;. .

When a passenger of group & alights trip  going to another trip, he/she perceives a variation - -Bm;
in his/her travel cost; in fact the waiting time for the following trip decreases when T; increases.

When a passenger of group & alights trip i going to the destination, he/she perceives a vanauon
om; in his/her travel cost if keKo while he/she does not perceive any variation if keK . In fact
in the first case, the gap with the ideal arrival time at the destination increases with T, whlle in
the second case, the variation T; does not affect the travel cost as for this group of passengers it is
sufficient to reach the destination within the target time.

Hence denoting by:

- Hg. the number of passengers of group & transferring from trip i to trip /.

- Hl;i the number of passengers of group & boarding trip i coming from the origin,

- H/:d the number of passengers of group & alighting trip i to reach the destination,

coefficient ¢; is given by:

¢ =a Z(H +HY) - ZH By, X (HJ/.‘;.-HZ).

ke Kl_ AeK J# LeK"uK

Consequently, given an assignment i, a cost ¢; cun be computed for each trip ie N. According to
the definition of cost ¢;, solving (4.1) provides trip departure variations m; such that:

- the starting assignment 4 is an e-feasible flow;

- the given vehicle blocks and driver duties modified according to 7, are still feasible;

- the generalized cost of assignment /1 iy minimized.
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Note that problem (4.1) is the dual of the following max cost flow problem :
max z SijXij + z i y;- Z U z;
i i i

Ex+y-z=c¢

xy,z220,
where £ denotes the node-arc incidence matrix of graph G. Hence problem (4.1) can be solved in
polynomial time [1].
If we impose further restrictions to the values of 7, model (4.1) is no more suitable and we must
introduce a more general one. As a first example of restrictions consider the case where trip
departure time variations must belong to finite sets of discrete values which can vary depending
on the trip (e.g. m;e (-10, -5, 0, 5, 10}, e {-60, -45, -30, -15, 0, 15}). These requirements may
occur at main stops, where trip departure at given times is preferred by passengers.
A second example takes into account more general equilibrium constraints. In model 4.1)
constraints on pairs of trips in A2 consider “local properties™ of the e-feasible based on the
earliest restarting time rule. If the generalized cost of the path refers to the whole path and not
only to the local properties at a stop, the constraints on the given e-feasible flow 4 can be
expressed as follows:

Cp(T) - V(@) - ey(m) <0, Y pe P), hp>0, V k; 4.2)

where c¢p(rm) and Yi(n) are the functions which give the cost of path p and the cost of the
minimum cost path for commodity & when 7 varies. It can be very difficult to formulate
constraints (4.2) as Y is not related to a fixed path.
Consider the particular case where each o/d path p uses portions of at most two trips, namely |
and /. Let 8.1, m)) = (ep(m) - V() / w(w) - €. Note that g(p,i,j,]g-,nj) can be easil): computed
when the variations m and 7 are applied to / and j. Hence we can impose the following
constraints:

Wiy, mm)) <0, Y p: hp>0. (4.3)

Now a model based on Quadratic Semi-Assignment [7] can be introduced. Consider a bipartite
graph (8,7, W) where nodes in S correspond to trips and nodes in T correspond to possible trip
departure time variations. The forward star of ie S identifies all possible departure time
variations for trip i. This corresponds to a discretization of time window constraints of problem
(4.1). Consequently, restrictions illustrated in the first example, where time window
discretization depends on the trip, can be approached by appropriately defining W. A semi-
assignment is a subset of W with exactly n arcs no two of which being incident on a same node
of S. Hence a semi-assignment defines the variation of departure times of all the trips. We will
denote with m =[], wa,..., T,) trip departure time variations provided by a feasible semi-
assignment {(i,n;)e W, i=1,...,n}, and with IT the set of all feasible semi-assignment.

Let P(iy) be the set of paths p using the pair of trips (i,j) such that hp>0, and Ap be the
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generalized cost modification of p due to T; and T;.
The interaction cost of this pair is denoted by gjjr; n and is defined as follows.

2 Ap hp if g(p,u,n,-,nj)so, Y pe P(i ),

pe P(iy)
Tjmm; =\ if 3 pe P(i): 8Py, )>0,
0 otherwise,

where M is a suitably large penalty value.
Hence the model can be written as follows:

mm% Qijm;m; 4.4

nell

Consider a pair of arcs (i,7;) and (J,m)) in a semi- assignment. 1f g(p,iy,75,7;) < 0 for all paths in
P(ij) then the variations of cost of each path pe P(i,j) mu ltiplied by number of passengers is
added to the objective function. Otherwise, if g(p,iy,,m)) > 0 for at least one pe P(iy), the
penalty M is added, as constraints are violated. Note that constraints on the vehicle blocks and
driver duties can be included in the formulation adding a suitable penalty in the objective
function; in particular we can set gjjn = M, if T <S s V (ij)e A3A4.
Hence, solving (4.4) provides trip depdrture times modifications such that:
- the given vehicle blocks and driver duties modified according to T, are still feasible;
- the starting assignment / is an e-feasible flow;
- the generalized cost of assignment } is minimized;
- the time variations assume values in the given sets.
If we consider the general case, that is when o/d paths can be composed by more than two
portions of trips, model (4. 4y is only an approximation of the real case. In fact, constraints (4.3)
provide only an approximation of (4.2) as it considers only pairs of trips.
The Quadratic Semi-Assignment problem is in general | difficult to solve optimally, even though
many classes of easy instances have been provided [8]. Branch&Bound algorithms are the most
efficient solution methods, but they are able 10 solve only instances of small size; however, many
efficient heuristic procedures have been proposed and, in practice, they produce solutions very

close to the optimum.

5. e-equilibria
In order to characterize suitable values of the tolerance €, let us now introduce a new definition

of assignment, called minimal e-equilibrium.

Definition 3
A tolerance € is called a minimal tolerance if F(e)#® and F(e)=0, V g'<e. Any passer{gcr

assignment he F(g) is a minimal e-equilibrium flow.
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Note that if 4 is a minimal e-equilibrium flow then the set of perceived equivalent paths for the
commodity k is given by Py(€). Moreover, hp >0 implies that pe Py(e).

Assuming that F in (3.1) is not empty, the procedure in table 1 iteratively increases the value of €
until an e-feasible flow is found, then returns the minimal tolerance €. Note that testing F(g)=@
can be done by using an LP code. Moreover, since at each iteration the value of € is increased,
new e-feasible paths are detected and new variables 4, are added to the previous problem. This
suggests to use a column generation approach to enhance the performance of the LP code.
Finally, to increase the value of the tolerance it suffices to find the minimum path cost for each
commodity &, c¢(k), in the set of all feasible paths having tolerance greater than €. This can be

computed by enumerating the r-shortest paths within that set.

Procedure Minimal(g):
begin
£:=0;
while F(g)=0 do
begin
for k:=1 to K do c(k):= min(cp: pePI\Pie)};
e=min{(c(k) - YNk k=1,..., K}
end
end.

table 1
Note that set of all possible relative tolerance values € is finite and it depends on the number of
feasible paths, procedure Minimal(e) is polynomial in the number of enumerated paths which, in

real applications, is usually quite small. Hence the following proposition holds.

Proposition 1
A minimal tolerance € and a corresponding minimal e-equilibrium flow can be found by

procedure Minimal(g).

Assume that an exogenous € has been provided and g, denotes the minimal tolerance returned
by the procedure Minimal(e); if €<, then no feasible passenger assignment exists for that given
tolerance. If model data (demand, network and costs) are correct, then either the tolerance € has
been underestimated or there exists a Wardrop equilibrium assignment where some passengers
use paths whose perceived cost is strictly greater than the cost of minimum equivalent paths, that
is (1+€)Yy. This problem is addressed in [12].

Conversely, if €>g,, then in any assignment he F(g,,) passengers do not travel on paths belonging
to F(e)\F(g,,), even if those paths are perceived equivalent; thart is, paths with relative cost
greater than €,, are not used. In this case we think that this assignment more precisely reflects the
passenger behavior since the tolerance estimation is a difficult task and it can be affected by
€ITors.

In the following, € will denote the value of a minimal tolerance and F(g) will denote the set of all
minimal €-equilibrium flows. Since in general F(e) may contain many equivalent assignments,

one can try to further characterize one particular e-equilibrium flow.
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We start by considering the passenger behavior assumptions. Since in any assignment in F(g)
passengers of the same group use paths which are perceived as equivalent, a Wardrop user
equilibrium assignment can be used to select an assignment strongly related to the passengers
behavior. This can be done by relaxing capacity constraints. that is by introducing a penalty

function for each in-vehicle arc. Formally, denoting by v, the flow on arc e:

K
Ve= Z z hpep < te, V ¢cE,,
k=1 pe Pk(S)

let g,(v,) be the generalized cost perceived by a passenger travelling on arc e, when the flow is ve
(see fig. 2). Function ge(ve) is strictly increasing, with g.(0)=ce, where ¢, is the travel cost
without congestion on arc ¢, and ge(ve) grows very fast as soon as v approaches the vehicle
capacity Ue.

& ()

A

fig. 2
Recalling that E,represents the set of all in-vehicle arcs, the Wardrop user equilibrium

assignment can be written as follows:

Ve
min Y, [gladr+ X ceve

eeE, 0 ¢eE\L,
> hy=Dy, k=1..... K;
pE Pk(E)
K
ve= Y, D hyBep Y ecE,, (5.1)
k=1pe P(£)
h,, 20, ¥V pe Pre), k=1,.... K.

P
Equilibrium assignment algorithms [4. 5, 9] are required to solve problem (5.1). Unfortunately,
the solution & of (5.1) may violate some of the capacity constraints, hence in principle h € F(e).
However, since F(€)#@, an appropriate selection of g,(v,) could, in general, provide a solution
which violates capacity constraints only by a negligible amount. Moreover, as k is a Wardrop

user equilibrium assignment, it reflects passenger behavior better than any e-feasible flow.
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Hence all these properties suggest 1o use this assignment as input for the improvement model
proposed in section 4.

Another possible e-equilibrium which can be used to apply the improving effectiveness model is
obtained by considering the following system optimum problem.

min(Y, D () hy: he Fe)). (5.2)
k pe P(e)

The use of relative cost Cp / Yk in the objective function is motivated as follows. Assume that
absolute costs Cp are used; then the solution of (5.2) will provide an assignment where
passengers of commodities with “large” Y& will be assigned to the shortest paths penalizing
passengers of commodities with “small” y;. This corresponds to assign a priority to passengers
of “distant” o/d pairs which cannot be motivated in terms of passenger behavior. When a relative
cost is used, passengers use a path according to the relative cost which is independent from the
o/d pair.

The solution of (5.2) is an assignment which minimizes the total cost. Let 4 be an optimal
solution of (5.2) and let rp be the residual capacity of pe P(g):

ry= min{u, - v,: ee E,~pl.

The following proposition is a direct consequence of optimality of A.

. Proposition 2
Given a commodity £, if there exists pe Pi(e) such that rp >0 then hy =0, V p'e Py(e) such thit

Cp' > Cp.

By summarizing, the assignment provided by (5.2) is an e-feasible flow which minimizes the
total cost of the users, and has the extremality property given in proposition 2, that:is, for each
commodity the cheapest paths are saturated. These properties suggest that also the solution of the
system optimum problem can be used as input for the improvement model discussed in section 4.
Finally, the comparison of results obtained using models (5.1) and (5.2) as starting pattern for the
conservative model, may suggest useful guidelines in further planning analyses. In fact, using
e-feasible or e-equilibrium flows one can analyze how passengers react to the service changes in
order to minimize their own travel cost. On the other hand. a system optimum assignment allows
to evaluate scenarios where one could force passenger choices in order to minimize the total

travel cost.

Conclusions

A model to improve the effectiveness of the transit system in a regional area has been proposed.
Resource constraints are taken into account in a “conservative™ fashion, since only variation of
trips departure times which maintain the feasibility of the given vehicles and drivers scheduling
are considered. Under quite reasonable hypotheses, this model yields a network flow problem,
while, when some hypotheses are relaxed, the model gives a Quadratic Semi-Assignment
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problem. The proposed model takes in input a passenger assignment (either g-feasible or
g-equilibrium) which satisfies the vehicles capacities. An assignment is determined by finding a
feasible solution of a multicommodity flow problem. The definition of an objective function
helps to characterize the passenger assignment. Here we proposed several approaches.

Further work will be devoted to an experimental evaluation of the approach and to provide a non
conservative model to obtain an assignment where the perceived cost for cach user is not worse

than the starting one, possibly changing the vehicles and the drivers scheduling.
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1. Introduction

The Traveling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP) play a
central role in distribution planning and have been studied extensively over the past four decades.
In recent years, several new heuristics have been proposed to determine good approximate
solutions for these difficult problems. Among these, the GENIUS method (for the TSP) and the
TABUROUTE algorithm (for the VRP) of Gendreau, Hertz and Laporte [1,2] have displayed
interesting computational results when applied to the classical versions of the problems. It is
well-known, however, that these classical versions of the TSP and the VRP, while encompassing
several of the key dimensions of distribution problems, do not represent adequately many real-
life situations since they do not account for some of the critical constraints that severely restrict
the design of distribution routes in practical settings. In particular, rime window constraints
that indicate when customers can be visited by vehicles do not appear in the classical versions
of the TSP and the VRP. The purpose of this talk is to describe extensions of GENIUS and
TABUROUTE that can be used to solve respectively the Traveling Salesman Problem with Time
Windows (TSPTW) and the Vehicle Routing Pfoblem with Time Windows (VRPTW).

This extended abstract is organized as follows. The TSPTW and VRPTW are formally
defined in section 2. We then briefly describe GENIUS and TABUROUTE in section 3. The
modifications to these heuristics required to handle time windows are discussed extensively in

section 4. Section 5 is devoted to the computational testing of the heuristics.

2. The TSPTW and VRPTW

The VRPTW is defined on a graph G = (V, A), where V = {v1, ..., v} is a vertex set
and A = {(vi,v;): 1 # J, vi,vj € V} is an arc set. Vertex v1 is a depot at which are based m
identical vehicles, where m is either fixed or bounded above by 7. Vertices vz, ..., vm Tepresent
customers who must be visited by the vehicles. With every arc (v;,v;) is associated a non-
negative cost c;; representing the travel time from v; to v;. With each customer v; are associated
a non-negative demand g¢;, a service time é; and a time window [a;, b;] specifying when the
vehicles may visit the customer. The VRPTW consists of designing a set of least cost routes in

such a way that a) every route starts and ends at the depot; b) every customer is visited exactly
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once by exactly one vehicle; ¢) the total demand carried by any vehicle does not exceed the
vehicle capacity @, and d) given that vehicles depart from the depot at time O, the arrival times
of vehicles at customer locations fall within their time windows (vehicles are allowed to wait if
they arrive too early). In addition, one may require the length of any route not to exceed a preset
upper bound L. With respect to the objective, the cost of a route is given either by the sum of

travel times of the arcs included in it or by its total duration (including any time lost waiting).

The TSPTW can be viewed as a special case of the VRPTW in which there is a single

vehicle of unlimited capacity that must visit all customers.

The classical versions of the TSP and the VRP differ from the TSPTW and the VRPTW

only by the absence of the time window constraints.

3. GENIUS and TABUROUTE

GENIUS is a two-phase heuristic for the TSP consisting of a tour construction phase based
on a generalized insertion step (GENI) followed by a tour improvement or post-optimization

procedure (US).

At a general step of GENI, some vertices already belong to a partial tour while
others are free. To perform a generalized insertion, consider the partially constructed tour
(v1,V2, -y V=1, V41, -, U, v1) With a given orientation. For any vertex v, define Np(v) as the
set of the p vertices closest to v already on the tour (if p < &), or as the set of all vertices on the
tour (if p > h). Let P, be the set of vertices on the path from v, to v, for a given orientation

of the tour. For a vertex v not yet on the tour, GENI considers two types of insertion:

Type I Select vertices v;,v; € Ny(v) and vy € Np(vj41) N Pji. Delete arcs

(vi,vi41), (V5,v41) and (vg,vg41); insert arcs (vi, ), (v,v5), (Vig1,vk) and (vj41, Vig)-

Type II: Select vertices vi,v; € Np(v),vx € Np(vit1) N P;ii\{vj,vj41} and v €
Np(vj+1) N Pij\{vi,vi+1}. Delete arcs (vi, vit1), (vj,vi41) and (vi—1,v7) and (vg—1,vx); in-

sert arcs (vi, v), (v, v5), (1, vj+1), (vk—1,v1-1) and (vit1, Vk).
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To determine the best move, it is necessary to compute the cost of the tour corresponding
to each insertion, to each orientation of the tour, and to each possible choice of vi, vj, Uk, Vi
GENI can be executed in O(np? +n?) operations. In the post-optimization phase US, each
vertex is in turn removed from the tour which is then reoptimized locally, using the reverse
GENI operation, and the vertex is then reinserted in the tour using GENI. The procedure ends

when it yields no further improvement.

TABUROUTE is a solution improvement heuristic for the VRP based on the tabu search
approach proposed by Glover [3,4]. It is an iterative search scheme in which a set of neighbours
of the current solution are examined at each iteration and the best is selected, even if it
leads to a deterioration of the objective. In this way, local optima are avoided, but cycling
becomes possible. To prevent such an occurrence, a short-term history of the search trajectory

is maintained in fabu lists and moves to recently visited solutions are forbidden.

At a general step of TABUROUTE, consider the current solution and randomly select g
vertices among a subset of V\{v1}. For each selected vertex, compute the cost of the solution
obtained by removing it from its current route, and inserting it using GENI in another route
containing one of its p closest neighbours. Perform the best non-tabu insertion. Whenever a
vertex v is moved from route r to route s, its reinsertion in route r is tabu for the next 8
iterations, where 6 is randomly selected in some interval [6min, Omax). TABUROUTE contains
several other features. a) Initially, \/n/2 trial initial solutions are created and a limited search
is conducted for each of them; the most promising solution is then selected as a starting point
for the algorithm. b) Route infeasibilities due to excess weight or excess length are allowed
during the course of the search; the excess capacity and length are multipli