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1 Introduction

There has been an increasing literature in the recent years trying to quantify the inefficiency
of Nash equilibrium problems (user-optimization) in non-cooperative games. The fact that
there is not full efficiency in the system is well known both in the economics but also in the
transportation literature (see [1]). This inefficiency of user-optimization was first quantified
by Papadimitriou and Koutsoupias [11] in the context of a load balancing game. They coined
the term “the price of anarchy” for characterizing the degree of efficiency loss. Subsequently,
Roughgarden and Tardos [15] applied this idea to the classical network equilibrium problem
in transportation with arc cost functions that are separable in terms of the arc flows. They
established worst case bounds for measuring this inefficiency for affine separable cost functions
and subsequently for special classes of separable nonlinear ones (such as polynomials). It
should be noted that Marcotte presented in [12], results on the “price of anarchy” for a bilevel
network design model. Recently, Johari and Tsitsiklis [9] also studied this problem in the
context of resource allocation between users sharing a common resource. In their case the
problem also reduces to one where each player has a separable payoff function. Correa, Schulz
and Stier Moses [3] have also studied “the price of anarchy” in the context of transportation
for capacitated networks. The cost functions they consider are also separable. The paper by
Chau and Sim [2] has recently considered the case of nonseparable, symmetric cost functions
giving rise to the same bound as Roughgarden and Tardos [15].

Wardrop [18] was perhaps the first to state the equilibrium principles in the context of
transportation. Dafermos and Sparrow [4] coined the terms “user-optimized” and “system-
optimized” in order to distinguish between Nash equilibrium where users act unilaterally in
their own self interest versus when users are forced to select the routes that optimize the total
network efficiency. Smith [16] and Dafermos [6] recognized that this problem can be cast as
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a variational inequality. In [5] Dafermos considered how the decentralized “user-optimized”
problem can become a centralized “system optimization” problem through the imposition of
tolls. Recently, Hearn and co-authors (see for example, [8]) have studied the problem of im-
posing tolls in order to induce a behavior to users so that their route choices are optimizing
the overall system. They study a variety of criteria for imposing tolls. The review paper by
Florian and Hearn [7], the book by Nagurney [13], and the references therein summarize the
relevant literature in traffic equilibrium problems.

Nash equilibrium problems arise in a variety of settings and model competitive and non-
cooperative behavior. In this paper we study the inefficiency of equilibrium by comparing
how the presence of competition affects the total profit in the system in a decentralized (user-
optimized) versus a centralized optimization (system-optimized) setting. We establish a bound
on the ratio of the overall profit of the system in these two settings. This work is the first to
consider non-separable, asymmetric cost functions and is important since it allows modeling
more realistic situations. For example, the presence of congestion in a large transportation
network where paths share arcs and there are several intersections, suggests that modeling
these cost functions (often representing travel times) through separable functions (i.e., arc
cost functions that depend only on the flow on that arc) may not be as realistic. In a large
congested transportation network the travel time to traverse an arc will be affected by traffic
congestion at its neighboring arcs. For example, the presence of a bottleneck or an accident at
an arc ahead will slow traffic down at neighboring arcs as well. Furthermore, travel times are
not affected by the flow on neighboring arcs in a symmetric way. For example, consider two
consecutive arcs, then the travel time to traverse the first arc is not affected the same way by
the flow of the arc ahead as the travel time of the arc ahead is affected by the flow of the arc
behind. This discussion leads us to conclude that it is more realistic to consider non-separable,
asymmetric cost functions in terms of the flow (see [10] for a discussion on how these travel
times may be determined).

This work allows a unifying framework which naturally extends results in the current literature.
In particular, our contributions versus the existing literature are the following.
1. We consider non-separable functions in the sense that cost functions also depend on the
strategies of the competitors. Furthermore, cost functions can be asymmetric in the sense
that different competitors’ strategies affect their cost functions differently. This generalization
is important since the strategies of one’s competitors will influence his/her own cost in an
asymmetric way. In particular, we introduce a measure of asymmetry (denoted by c2 in
Section 2) which quantifies the degree of asymmetry of the competitors’ cost functions.
We establish that the ratio of the total cost in the system operating in a user-optimized setting
versus the total cost in a system optimized setting is bounded by







4

4 − c2
if c2 ≤ 2

c2 if c2 > 2.

We illustrate how our results are a natural generalization of the bound becomes 4/3 as in [15]
for separable problem functions and [2] for nonseparable symmetric ones. The results in the
affine case allow the feasible region to be a non-convex set.
2. We generalize our results to nonlinear functions. We introduce a measure which quantifies
the degree of nonlinearity of the problem function (denoted by A). We establish that the
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bound naturally extends to involve the nonlinearity parameter A, i.e.,







4

4 − c2A
if c2 ≤ 2

A

c2A2 − 2(A − 1) if c2 > 2
A .

3. We establish that the bound is tight for affine and for some nonlinear problems.
4. We introduce an alternative semidefinite optimization formulation for deriving these
bounds. This approach does not require positive definiteness of the Jacobian matrix (i.e.,
it does not need to be invertible). Therefore, the solution does not need to be unique. We
illustrate that this approach gives rise to the same bound when the Jacobian matrix is positive
definite.

2 A Bound for Affine and Asymmetric Cost Functions

In this section, we establish a bound between the user and the system optimization problems
in the context of minimizing cost. For the (UO) decentralized problem we will consider the
variational inequality problem of finding xu ∈ K satisfying

F (xu)t(x − xu) ≥ 0, for all x ∈ K. (1)

Notice that in the traffic equilibrium context the variational inequality problem function F is
the arc cost function vector while the vector of variables x are the arc flows. As we discussed in
the previous section, it is more realistic to model this function as a non-separable asymmetric
function of the flow.

Let xu and xs denote solutions of the user and system optimization problems respectively. Let
Zu = F (xu)txu be the total cost for the user-optimized problem (UO) and Zs = F (xs)

txs =
minx∈K F (x)tx be the total cost for the system-optimized problem (SO). In this section, we
provide a bound on Zu/Zs for affine cost functions F (x) = Gx + b, with G � 0 (i.e., positive
definite) and asymmetric matrix, btx ≥ 0 for all x ∈ K (notice that this follows when constant
vector b ≥ 0 and K ⊆ Rn

+ which is the case in the traffic equilibrium setting). In this case, the
system optimization problem involves the minimization of a strictly convex quadratic function
over the set K.

For a matrix G, we consider the symmetrized matrix

S =
G + Gt

2

and introduce the following measure c2 of the degree of asymmetry of matrix G:

Definition 1:

c2 ≡ ‖S−1G||2S = sup
w 6=0

‖S−1Gw‖2
S

‖w‖2
S

= sup
w 6=0

wtGtS−1Gw

wtSw
.

Note that by setting l = S1/2w, the previous definition of c2 becomes

c2 = sup
l 6=0

ltS−1/2GtS−1GS−1/2l

‖l‖2
= λmax(S−1/2GtS−1GS−1/2).
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When the matrix G is positive definite and symmetric, that is, G = Gt (and therefore, S = G),
then c2 = 1. As an example, consider

G =

[

1 a
−a 1

]

.

Since S = I, it easily follows that c2 = 1 + a2. The quantity c2 in this case quantifies the
observation that as |a| increases, the degree of asymmetry of G increases as well.

Theorem 1 (see [14])
For an affine variational inequality problem with problem function F (x) = Gx+b, with G � 0,
btx ≥ 0 for all x ∈ K, we have:

Zu

Zs
≤







4

4 − c2
if c2 ≤ 2

c2 if c2 > 2.

• Separable affine cost functions:

When the variational inequality problem function F is separable, it has components
Fi(x) = gixi + bi. In this case the matrix G is diagonal, with diagonal elements gi > 0.
In this case c2 = 1 and the bound in Theorem 1 becomes

Zu

Zs
≤

4

4 − c2
=

4

3

originally obtained in Roughgarden and Tardos [15].

• Non-separable symmetric affine cost functions:

When the variational inequality problem function F is non-separable, that is F (x) =
Gx + b, with G a general symmetric positive definite matrix, then c2 = 1 and thus
Zu/Zs ≤ 4/3, thus showing that the bound of 4/3 holds also for non-separable symmetric
affine functions (see also Chau and Sim [2]).

• Non-separable asymmetric affine cost functions:

When the matrix G is “not too asymmetric” (in the sense that c2 ≤ 2) then the bound
becomes 4

4−c2
. On the other hand, for “rather asymmetric” matrices (in the sense that

c2 > 2) then the bound becomes c2.

In [14] we establish that when the constant term is zero that is, F (x) = Gx, then the bound
is always c2. In [14] we illustrate that these bounds are tight.

3 A Bound for Nonlinear, Asymmetric Functions

In this section, we assume that the Jacobian matrix is not a constant matrix G but a positive
definite, nonlinear and asymmetric matrix ∇F (x). The positive definiteness assumption of the
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Jacobian matrix implies that the variational inequality problem has a unique solution (see for
example [13] for details).

We introduce the symmetrized matrix, S(x) = ∇F (x)+∇F (x)t

2 . We now extend Definition 1 for
measuring the degree of asymmetry of the problem to a definition that also incorporates
the nonlinearity of the cost functions involved.

Definition 2: We define a quantity c2 that measures the degree of asymmetry of the Jacobian
matrix ∇F (x). That is,

c2 ≡ sup
x∈K

‖S(x)−1∇F (x)‖2
S(x).

Constant c2 is in this case the supremum over the feasible region, of the maximum eigenvalue
of the positive definite and symmetric matrix

S(x)−1/2∇F (x)tS(x)−1∇F (x)S(x)−1/2.

When the Jacobian matrix is positive definite and symmetric, then c2 = 1.

Furthermore, we need to define a measure of the nonlinearity of the problem function F .
As a result, we consider a property of the Jacobian matrix which always applies to positive
definite matrices. This allows us in some cases to provide a tight bound. This bound naturally
extends the bound in Theorem 1 from affine to nonlinear problems. The bound involves the
constant A that measure the nonlinearity of the problem.

Definition 3: (see [17] for more details)
The variational inequality problem function F : Rn → Rn satisfies Jacobian similarity

property if it has a positive semidefinite Jacobian matrix (∇F (x) � 0, ∀x ∈ K) and ∀w ∈ Rn,
and ∀x, x̄ ∈ K, there exists A ≥ 1 satisfying

1

A
wt∇F (x)w ≤ wt∇F (x̄)w ≤ Awt∇F (x)w.

Lemma 1: (see [17]) The Jacobian similarity property holds under either of the following
conditions:

• The Jacobian matrix is strongly positive definite (i.e. has eigenvalues bounded away
from zero). Then a possible bound for the constant A is

A =
maxx∈K λmax(S(x))

minx∈K λmin(S(x))
.

• The problem function is affine, with positive semidefinite Jacobian matrix G. In this
case A = 1.

Theorem 2 (see [14]) For a variational inequality problem with a strictly monotone, nonlin-
ear continuously differentiable problem function F satisfying the Jacobian similarity property,
F (0)tx ≥ 0 for all x ∈ K, we have:

Zu

Zs
≤







4

4 − c2A
if c2 ≤ 2

A

c2A2 − 2(A − 1) if c2 > 2
A .
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Remarks:

1. When the variational inequality problem function is affine, F (x) = Gx+b, then ∇F (x) =
G and as a result A = 1 and the bound coincides with the one we found in the previous
section.

2. When the term F (0) = 0 then the bound becomes Zu

Zs
≤ c2A2 − 2(A − 1).
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