
TRISTAN V: The Fifth Triennal Symposium on Transportation Analysis 1

A Comparison of Two New Exact Algorithms for the Robust

Shortest Path Problem

Roberto Montemanni Luca Maria Gambardella Alberto Donati

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)
Galleria 2

CH-6928 Manno-Lugano, Switzerland
{roberto, luca, alberto}@idsia.ch

1 Introduction

When transportation problems are modelled in mathematical terms, a road network is usually
represented as a weighted digraph, where each arc is associated with a road and costs represent
travel times. In this context, a shortest path problem has to be solved every time the quickest
way to go from one place to another has to be calculated.

Unfortunately in the reality it is not easy to estimate travel times exactly, since they depend
on many factors which are difficult to predict, such as traffic conditions, accidents or weather
conditions. For this reason the fixed cost model previously introduced may be inadequate. To
overcome this problem more complex frameworks have been studied. In particular a model
where an interval of values, representing a range of possible real costs, is associated with each
arc has been proposed. It is the interval data model, which is considered in this paper and will
be described in details in Section 2.

Having adopted this model to represent reality, a criterion to drive optimization has to be
chosen. We use the robust deviation criterion (sometimes referred to as relative robustness
criterion). This criterion was discussed in Kouvelis and Yu [3], a book entirely devoted to
robust discrete optimization.

A robust deviation shortest path from s to t is a path from s to t which minimizes the maximum
deviation from the optimal shortest path from s to t over all realizations of arc costs.

Yu and Yang [7] conjectured that the robust deviation shortest path problem with interval
data is NP-hard. This conjecture was proven to be true in Zieliński [8].

Karaşan et al. [2] proposed a mixed integer programming formulation for the problem based
on an important theoretical result (see Theorem 1).

In this paper we present an overview of the two main exact methods developed so far to solve
the robust deviation shortest path problem with interval data.

Le Gosier, Guadeloupe, June 13-18, 2004

2 TRISTAN V: The Fifth Triennal Symposium on Transportation Analysis

Figure 1: Interval graph (a) and scenario induced on it by p = {s, 0, t} (b).

Computational results are also presented. They aim to compare the performance of the algo-
rithms on a set of road networks with different characteristics.

2 Problem description

A directed graph G = (V,A), where V is a set of vertices and A is a set of arcs is given
together with a starting vertex s ∈ V , and a destination vertex t ∈ V . An interval [lij , uij],
with 0 < lij ≤ uij , is associated with each arc (i, j) ∈ A. Intervals represent ranges of possible
costs (travel times). An example of interval graph is given in Figure 1(a).

We can formally describe the robust deviation shortest path problem with interval data through
the following definitions:

Definition 1 A scenario r is a realization of arc costs, i.e. a cost cr
ij ∈ [lij , uij] is fixed

∀(i, j) ∈ A.

Definition 2 The robust deviation for a path p from s to t in a scenario r is the difference
between the cost of p in r and the cost of the shortest path from s to t in scenario r.

Definition 3 A path p from s to t is said to be a robust deviation shortest path if it has
the smallest (among all paths from s to t) maximum (among all possible scenarios) robust
deviation.

A scenario can be seen as a snapshot of the network situation, and a robust deviation shortest
path is a path which guarantees reasonably good performance under any possible configuration
of travel times over the network.

Given a directed graph and an origin/destination pair (s, t), the robust deviation shortest path
problem is the problem of retrieving a robust deviation shortest path.

The following important result is at the basis of the methods described in Section 3.

Theorem 1 (Karaşan et al. [2]) The robust deviation for path p is maximized at the sce-
nario in which the lengths of all arcs on p are at upper bounds and the lengths of all other arcs
are at lower bounds.

Le Gosier, Guadeloupe, June 13-18, 2004

TRISTAN V: The Fifth Triennal Symposium on Transportation Analysis 3

Theorem 1 implies that we need to consider only a finite number of scenarios, namely as many
as the number of paths in the graph.

In the remainder of this paper we will refer to the scenario r, derived from path p as described
in Theorem 1, as the scenario induced by path p. We will also refer to the cost of p (i.e.∑

(i,j)∈p uij) minus the cost of a shortest path of the scenario induced by p, as the robustness
cost of p. Figure 1(b) depicts the scenario induced by path p = {s, 0, t} on the graph of Figure
1(a). The robustness cost of p is in this case (2 + 7) − (2 + 1 + 3) = 3.

3 Exact algorithms

3.1 Algorithm 1

This method was presented in Montemanni and Gambardella [5]. It is based on the conjecture
that a path ranking on scenario u, where cu

ij = uij ∀(i, j) ∈ A, is also a good ranking in terms
of robust deviation.

Exploiting this approach, i.e. examining paths following the ranking on scenario u, a lower
bound for the robustness cost of the feasible paths not yet examined can be provided at each
iteration.

We indicate with pi the i-th path in the ranking on scenario u, with Costu(pi) the cost in
scenario u of path pi, with CostR(pi) the robustness cost of pi and with ub the robustness cost
of the path with minimum robustness cost retrieved so far. The following inequality holds:

CostR(pj) ≥ Costu(pi) − Costu(p1) ∀j ≥ i (1)

Inequality (1) suggests an exit criterion for the algorithm. The optimal solution has been
found if, at iteration i, the following inequality holds:

Costu(pi) − Costu(p1) ≥ ub (2)

In practice, if paths are examined in non-decreasing order of Costu(p), a lower bound for the
robustness cost of the paths not yet examined is constantly available. This bound can be
compared with the robustness cost of the best path retrieved, in order to decide whether to
continue examining paths or to stop the computation.

According to Martins and dos Santos [4], and notwithstanding a very high theoretical com-
putational complexity for their algorithm, ranking the shortest paths of a fixed scenario is, in
practice, an easy task.

Another important consideration, which follows from Theorem 1, is that the robustness cost
of a given path can be evaluated by solving a classic shortest path problem in the scenario
induced by it. This operation can be carried out in polynomial time (see Dijkstra [1]).

The algorithm which follows from the theoretical results and considerations above, works in

Le Gosier, Guadeloupe, June 13-18, 2004

4 TRISTAN V: The Fifth Triennal Symposium on Transportation Analysis

the following way: a procedure to rank the paths from s to t in scenario u by non-decreasing
values of Costu(p) is run. For each path retrieved, the respective robustness cost is calculated
(by solving a shortest path problem in the scenario induced by it) and eventually the value of
ub is updated. The algorithm stops when the condition described by inequality (2) is matched.

Some theoretical results, useful to speed up the algorithm, are also presented in [5]. If there
is no overlap between a path p from s to t and a shortest path SPl from s to t in scenario
l, where cl

ij = lij ∀(i, j) ∈ A, then the robustness cost of p can be calculated without solving
a shortest path problem on the graph induced by p, because SPl is a shortest path in this
scenario.

Another speed-up rule is the following one. If we call SPpj
the shortest path in the scenario

induced by path pj , and we have that pi ∩ SPpj
⊆ pj ∩ SPpj

with i > j, then we do not need
to calculate CostR(pi), because it possible to prove that CostR(pi) ≥ ub.

3.2 Algorithm 2

Montemanni et al. [6] propose a branch and bound algorithm. This algorithm constructs and
visits a search-tree.

We refer to the search-subtree rooted in the search-tree node d as T (d). Each node d of the
search tree is identified by four elements: 1. the arc list in(d). The arcs contained in in(d)
must appear in all of the paths associated with the nodes of T (d); 2. the arc list out(d).
The arcs contained in out(d) are forbidden for all of the paths associated with the nodes of
T (d); 3. the path p(d). It is the path with the minimum cost in scenario u which respects
the limitations imposed by arc sets in(d) and out(d), i.e. p(d) must contain the arcs in in(d)
and cannot include the arcs in out(d); 4. the lower bound lb(d). It is a lower bound for the
robustness cost of the paths associated with the search-tree nodes of T (d). Because of the
meaning of out(d) and Theorem 1, we know that the cost of each arc (i, j) in out(d) will be
equal to lij in each of the scenarios derived from the paths associated with the nodes of T (d).
We define SPout(d) as the shortest path of the scenario where the cost of all the arcs in out(d)
are at their lower bounds and the cost of the remaining arcs are at their upper bounds, and
Costout(d)(p) as the cost of path p in this scenario. We can then derive the following definition
for lb(d):

lb(d) := Costu(p(d)) − Costout(d)(SPout(d)) (3)

The root r of the search-tree constructed by the algorithm is the node with in(r) = ∅, out(r) =
∅ and lb(r) = 0. Initially r is the only node of the set of nodes to be examined, and ub is set
to the robustness cost of p(r).

At each iteration the not yet examined node d with the smallest value of lb(d) is selected and
examined. The first arc a on path p(d) (starting from node s) which is not contained in in(d)
is identified (if it exists). If p(d) = in(d), node d is a leaf of the search-tree and consequently a

does not exist. Otherwise two new search-tree nodes are created. The first new node, d ′, has
in(d′) = in(d) and out(d′) = out(d) ∪ {a}, while d′′, the second one, has in(d′′) = in(d) ∪ {a}
and out(d′′) = out(d). Once arc a = (i, j) is inserted into in(d′′), all the arcs of type (i, k)
and (k, j) are inserted into out(d′′), since they cannot be part of a shortest path from s to t

anymore. p(d′) is calculated and in case its robustness cost is lower than ub, ub is updated

Le Gosier, Guadeloupe, June 13-18, 2004

TRISTAN V: The Fifth Triennal Symposium on Transportation Analysis 5

Table 1: Networks characteristics.

Networks |V | |A|
1

|A|

X lij

uij

Sottoceneri1 387 1038 0.663
Lugano2 576 1327 0.899
Stuttgart3 2490 16153 0.822
Padova4 1522 2579 0.313

and every search tree node d with lb(d) ≥ ub is deleted from the set of nodes to be examined.
In case the lower bounds at nodes d′ and d′′ are less then ub, d′ and d′′ are inserted into the
set of search-tree nodes to be examined.

The procedure stops when the set of nodes to be examined becomes empty.

To evaluate the robustness cost of a path p, it is enough to solve a classic shortest path problem
in the scenario induced by p (according to Theorem 1). The algorithm described in Dijkstra
[1] was used, while a straightforward modification of it was adopted to calculate p(d), given a
search-tree node d.

4 Computational experiments

The graphs on which tests are run represent real road networks, and the interval costs associ-
ated with arcs are realistic. Characteristics of the graphs are presented in the first four columns
of Table 1, where meanings are as follows: Networks contains the name of the graphs, |V | and
|A| the number of vertices and arcs respectively. In the forth column the average values for

the ratio
lij
uij

are reported. They give an indication of the width of travel time intervals.

It is important to notice that Stuttgart has a large number of arcs, while Padova presents
a value smaller than the other networks in the forth column. This depends on a very high
variability in travel times between pick and non-pick hours and is a consequence of the network
conformation itself.

The results presented in Table 2 have been obtained on a Pentium 4 1.5 GHz / 256 MB
computer. For each network considered we report the average value and the standard deviation
for computation times (in seconds) over 20 instances (with random origins and destinations).
A maximum computation time of 3600 seconds is allowed. Since Algorithm 2 almost never
concluded the computation within this time limit on network Padova, the corresponding entries
of the table are consequently empty.

The results suggest that Algorithm 2 is faster than Algorithm 1 for the first three problems,

1Main roads of the Sottoceneri region, i.e. the southern part of Canton Ticino (CH). Provided by Pina
Petroli SA (http://www.pina.ch).

2Road network of the city of Lugano (CH). Provided by CRTL (Commissione Regionale dei Trasporti del
Luganese).

3Road network (aggregated) of the Stuttgart area (D). Provided by PTV (Planung Transport Verkehr) AG
(http://www.ptv.de).

4Main roads of the Padova area (I). Provided by Comune di Padova (http://www.comune.padova.it).

Le Gosier, Guadeloupe, June 13-18, 2004

6 TRISTAN V: The Fifth Triennal Symposium on Transportation Analysis

Table 2: Computation times (in seconds).

Networks Alg. 1 [5] Alg. 2 [6]
Avg StDev Avg StDev

Sottoceneri 0.078 0.159 0.073 0.136
Lugano 0.191 0.316 0.117 0.191
Stuttgart 3.129 5.666 1.752 2.653
Padova 73.785 146.022 - -

but its computation times explode for the last network considered. For this problem Algorithm
1 is not very fast but remains the only possible choice. This not very good performance of the
algorithms on the Padova network depends, in our opinion, on the wideness of the travel time
intervals in this network (see Table 1, column four). This factor dramatically impacts on the
quality of the lower bounds used by the two algorithms.

In conclusion, Algorithm 2 is in general the fastest, but in case of networks with wide (average)
travel time intervals, Algorithm 1 seems to be the best choice.

Another interesting observation is about standard deviations of computation times. They are
always very high, and this indicates that both the algorithms (and in particular Algorithm 1)
are very sensitive to the values of the origin/destination pair. However, since it is easy to see
that different origin/destination pairs can generate problems with a very different complexity
on a same graph, this is reasonable.

5 Conclusion

We have compared two exact algorithms for the robust shortest path problem with interval
data on some real road networks.

The results suggest that the choice of the best one strongly depends on the characteristics of
the road network on which the algorithm has to be run. In particular the wideness of travel
times intervals associated with the arcs seems to have a very strong impact on the performance
of the methods.

References

[1] E.W. Dijkstra, “A note on two problems in connection with graphs”, Numerische Mathe-
matik 1, 269-271 (1959).

[2] O.E. Karaşan, M.Ç. Pinar, and H. Yaman, “The robust shortest path problem with interval
data”, Computers and Operations Research (2002).

[3] P. Kouvelis and G. Yu, Robust Discrete Optimization and its applications, Kluwer Aca-
demic Publishers (1997).

Le Gosier, Guadeloupe, June 13-18, 2004

TRISTAN V: The Fifth Triennal Symposium on Transportation Analysis 7

[4] E.Q.V. Martins and J.L.E. dos Santos, “A new shortest paths ranking algorithm”, Inves-
tigação Operacional 20(1), 47-62 (2000).

[5] R. Montemanni and L.M. Gambardella, “An exact algorithm for the robust shortest path
problem with interval data”, Computers and Operations Research 31(10), 1667-1680 (2004).

[6] R. Montemanni, L.M. Gambardella, and A.V. Donati, “A branch and bound algorithm for
the robust shortest path problem with interval data”, Operations Research Letters 32(3),
225-232 (2004).

[7] G. Yu and J. Yang, “On the robust shortest path problem”, Computers and Operations
Research 25(6), 457-468 (1998).

[8] P. Zieliński, “The computational complexity of the relative robust shortest path problem
with interval data”, European Journal of Operational Research (to appear).

Le Gosier, Guadeloupe, June 13-18, 2004

