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1 Introduction

Classical algorithms to solve fixed point problems are iterative methods based on the famous
Banach Contraction Principle, which can be described as follows. Let T : X → X be a
mapping such that there exists x∗ ∈ X and T (x∗) = x∗. Given x0 ∈ X, the iterates of the
method are given by

xk+1 = xk + αk(T (xk)− xk) (1)

where αk ∈ [0; 1]. The fixed point iterations, also called method of successive substitutions
and nonlinear Richardson iterations, is obtained with αk = 1,∀k. It has been proved to be
convergent if the mapping T is contracting.

The method of successive averages (MSA) uses αk = 1
k
. This method has been successively

used for some classical transportation problems, as for example Sheffi & Powell (1982) who
used it for stochastic user equilibrium or Cantarella (1997) who applied this algorithm to solve
two general fixed point formulations of multimode multi-users equilibrium problems.

The Polyak averaging method is a simple off-line running average of points generated by
(1). More precisely at each iteration we compute a new iterate, say Ψk =

∑k
i
xi

k
. Polyak &

Juditsky (1992) have shown that the sequence Ψk converge to x∗ at an optimal rate, if αk → 0
slower than o(1/k). Remarkably this procedure theoretically equals or surpasses asymptotic
performances of any iterative methods defined by (1).

Another natural way to express fixed point problems is as resolution of systems of nonlinear
equations T (x)− x = F (x) = 0, with F : X → X, X ⊆ Rn. Most methods used to solve such
systems of equations lie in the quasi-Newton framework. At each iteration k solve:
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Bksk = −F (xk), (2)

xk+1 = xk + sk, (3)

and update Bk+1, where matrices Bk ∈ Rn×n for all k. Specific instances are based on specific
formula to compute Bk+1. In particular, if Bk+1 = ∇F (xk+1)

T , it is the Newton method.
Although very efficient, this method suffer from the need for analytical derivatives. Secant
quasi-Newton methods require Bk+1 to verify the secant equation

Bk+1(xk+1 − xk) = F (xk+1)− F (xk). (4)

The most classical is Broyden’s method, where

Bk+1 = Bk +
((F (xk)− F (xk+1))−Bk(xk − xk+1)) (xk − xk+1)

T

(xk − xk+1)T (xk − xk+1)
. (5)

The main drawback of such methods in the context of large scale problems is the storage cost
for the matrix Bk+1 and also the resolution of the associated linear system (2).

Large-scale adaptations have been proposed in the literature. Broyden (1965) propose to
update B−1

k instead of Bk, avoiding to solve (2). Limited memory methods are based on a
compact representation of matrices B−1

k (Gomes-Ruggiero, Martinez & Moretti 1991), (Byrd,
Nocedal & Schnabel 1994). The Inverse-Column Updating method (ICUM), by Martinez &
Zambaldi (1992) is a secant algorithm where B−1

k+1 is obtain from B−1
k by changing only one

of its columns.

But the most successful methods for solving large-scale systems of nonlinear equations are
probably Newton-Krylov methods (Kelley 2002). The use finite-difference approximation of
the derivative within various small dimension Krylov subspaces. Their main drawback in our
context is that they are not appropriate in the presence of stochasticity.

2 Large Scale Generalized Secant Method

We propose a method which is an extension of Broyden’s idea. When Broyden’s method uses
the secant equation (4) to interpolate the linear model and the function at the two last iterates,
we propose to use more than two of them. In this case, it is not appropriate anymore to impose
exact interpolation. Instead, we propose a least-squares approach to obtain B−1

k+1:

B−1
k+1 = argmin

J

∥

∥J
(

Ω · Yk+1 Γ · In×n
)

−
(

Ω · Sk+1 Γ · (B0
k+1)

−1
)∥

∥

2

F
(6)

where Ω ∈ Rk+1 is a diagonal matrix with weights ωik+1 on the diagonal for i = 0, · · · , k; the
matrix Γ contains weights associated with the arbitrary term (B0

k+1)
−1; Yk+1 = (yk, yk−1, . . . , y0);

Sk+1 = (sk, sk−1, . . . , s0) with yk = F (xk+1)− F (xk) and sk = xk+1 − xk.

Let A =
(

Ω · Yk+1 Γ · In×n
)

and C =
(

Ω · Sk+1 Γ · (B0
k+1)

−1
)

, using these notations,

(6) can be written as B−1
k+1 = argmin

J

‖A−C‖2F . Solving the normal equations we can directly
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compute the associated quasi-Newton step given in (2):

sk = −(CAT )(AAT )−1F (xk) (7)

With a small amount of linear algebra1 we can show that sk defined by (7) is equivalent to
the following:

{

1. Solve x = argmin
y

‖Ay − F (xk)‖22
2. Compute sk = −Cx

(8)

Remark that the least-squares associated with (8) is now a vector least-squares, contrarily to
(6) which is a generalized matrix least-squares. Moreover with this formulation there is no need
to store or even construct the matrix B−1

k+1, and consequently the method can be implemented
as a matrix-free algorithm, i.e. only matrix-vector products have to be computed, which is
decisive for large scale problems. The only matrices that we need to store are Yk, Sk, (B

0
k+1)

−1,
Ω and Γ. More precisely, matrices Yk and Sk have size n× (κ − 1) where n is the size of the
problem and κ the number of iterates kept in the population. The matrix (B0

k+1)
−1 is an a

priori matrix whose role is to overcome the possible under-determination of the problem (6).

The algorithm based on the least squares approach is described in detail by Bierlaire & Crittin
(2003a), where a proof of convergence can be found. The adaptations for large scale problems
are described in Bierlaire & Crittin (2003b). A transportation application is described in
Bierlaire & Crittin (2003c). In this extended abstract, we provide various numerical results
illustrating the good behavior of the algorithm.

3 Numerical results

In this section we present numerical results using the proposed algorithm. We first consider
global performances of this method on medium scale problems. Then, we show that iGSM is
efficient on large scale systems on a set of classical difficult problems and illustrate the behavior
of iGSM on a specific problems, the standard Convection-Diffusion problem, particularly to
underline the influence of the size of the population on the performance of the algorithm.
Finally we propose some results on noisy systems of nonlinear equations to underline the
robustness of our population approach compared to classical large scale methods in presence
of different types of stochasticity. In conclusion, we illustrate the applicability of iGSM to the
consistent anticipatory route guidance generation, a real transportation fixed-point problem
of very high dimension and stochasticity.

For all these experiences using iGSM and ICUM we have only used undamped version, without
any step control or globalization approach. This is motivated by Ruggiero, D.N.Kozakevich &
J.M.Martnez (1996), who conclude that globalizations based on backtracking strategy do not
seem to be efficient in the context of quasi-Newton methods for nonlinear systems of equations.
Our experience confirms this observation. The tests we have performed indeed confirm that
globalization techniques may significantly decrease the performance of the algorithms, and
may sometimes even fail to converge, even when the local version does converge.

All algorithms and test functions have been implemented with the package Octave (Eaton
1997) and computations have been done on a laptop equipped with 1066MHz CPU in double

1Remarking that A
T (AA

T )−1 = (AT
A)−1

A
T
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precision. The machine epsilon is about 2.2204e-16. In all the tests we used a standard
stopping criterion in spite of potential scaling problems (Dennis & Schnabel 1996):

‖F (xk)‖ ≤ 10−6‖F (x0)‖ (9)

All the algorithms are stopped after 200 function evaluations, or when ‖F (x)‖2 > 1010. In
those cases, the algorithm is declared to have failed to converge.

3.1 General Performance analysis

Before analyzing large scale problems, we first expose a performance analysis of iGSM method
to solve medium scale nonlinear systems of equations, extending the results presented by
Bierlaire & Crittin (2003a). We compare it with the Hybrid method proposed by Martinez
(1982), the ICUM method by Martinez & Zambaldi (1992) and the GSM method. The hybrid
method is based on conjectures allowing to choose, at each iteration, between the Broyden
Good or the Broyden Bad update. Martinez (2000) observes a systematic improvement of the
Hybrid approach with respect to each individual approach BGM and BBM. iGSM method has
been implemented with the large-scale features, that is B0

k+1 = In×n, κ = 10, Γ = τIn×n, and
τ =

√
ε.

The numerical experiments have been carried out on the same set of test functions as in
Bierlaire & Crittin (2003a), with dimensions 10 and 50, and using the identity matrix as the
initial approximation of the Jacobian.

The results are presented using the performance profiles proposed by Dolan & More (2002). It
is a powerful visual tool for evaluating and comparing the performance of several algorithms
applied to many problems. The performance profile for a method is the cumulative distribution
function for a given performance metric.

In the following we use the number of function evaluations to reach convergence as performance
metric. If fp,a is the performance metric of algorithm a on problem p, then the performance
ratio is defined by

rp,a =
fp,a

mina{fp,a}
, (10)

if algorithm a has converged for problem p, and rp,a = rfail otherwise, where rfail must be
strictly larger than any performance ratio (10). For any given threshold π, the overall perfor-
mance of algorithm a is given by

ρa(π) =
1

np
Φa(π) (11)

where np is the number of problems considered, and Φa(π) is the number of problems for which
rp,a ≤ π.

In particular, the value ρa(1) gives the probability that algorithm a wins over all other algo-
rithms. The value limπ→rfailρa(π) gives the probability that algorithm a solves a problem and,
consequently, provides a measure of the robustness of each method.

The performance profile presented in Figure 1 shows that iGSM (with large-scale features)
has a similar behavior than GSM, in comparison to ICUM and the Hybrid Method. Actually,
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Figure 1: Performance profiles for medium scale problems

GSM performs a little faster (small values of π), while iGSM seems a little more robust (high
values of π), but we do not consider these differences being significant. This is encouraging, as
the large scale features are not associated with a loss of performance, compared to the original
GSM design.

Comparing iGSM and ICUM (both designed for large scale problems and using the identity
matrix as initial approximation of the Jacobian), iGSM solves about 70% of the problems,
while ICUM solves about 40%. iGSM is the fastest method for 35% of the problems, and so
is GSM.

The numerical experiments for the large scale problems were carried out using a set of 33
problems. The first 18 problems are classical nonlinear system of equations: Countercur-
rent reactors problem [CRP] (Bogle & Perkins 1990), Extended Powell badly scaled function
[EPBSF] ((Moré, Garbow & Hillstrom 1981)), A trigonometric system [TS] (Toint 1986), A
trigonometric-exponential system (I) [TESI] (Toint 1986), Singular Broyden problem [SBP]
(Gomes-Ruggiero et al. 1991), Tridiagonal System [TdS] (Li 1989), Five-diagonal system
[FdS] (Li 1989), Seven-diagonal system [SdS] (Li 1989), Structured Jacobian problem [SJP]
(Gomes-Ruggiero et al. 1991), Extended Rosenbrock function [ERF] (Luksan 1994), Extended
Powell singular function [EPSF] (Luksan 1994), Extended Gragg and Levy function [EGLF]
(Luksan 1994), Broyden tridiagonal function [BTF] (Moré et al. 1981), Broyden Banded prob-
lem [BBP] (Moré et al. 1981), Discrete boundary value problem [DBVP] (Moré et al. 1981),
Chandrasekhar H-equation residual [CHR] (Kelley 2002), Ornstein-Zernike Equation [OZE]
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(Kelley 2002), Convection-Diffusion Equation [CDE] (Kelley 2002). The remaing 15 systems
without name have been selected from (Spedicato & Huang 1997), the number in brackets coin-
cide with the numbering used in the paper. [SPED1], [SPED2], [SPED4], [SPED5], [SPED6],
[SPED7], [SPED9], [SPED12], [SPED13], [SPED17], [SPED18], [SPED20], [SPED22] have
been proposed by Roose, Kulla, Lomp & Meressoo (1990). [SPED27] has been proposed by
M.Robert & Shipman (1976) and [SPED28] by Ascher & Russel (1985).

The runs were done with n = 100 and n = 1000 for all problems, except the Ornstein-Zernike
Equation where n = 402 and the right preconditioned Convection-Diffusion Equation with
n = 961. For the three problems [CHR], [OZE] and [CDE] we have used the implementation
furnished by Kelley (2002). For each problem, we have used the starting point proposed in
the original papers. All the problems and methods have been implemented using Octave.

The performance of iGSM and ICUM may be sensitive to the first matrix B0. There is a
trade-off here between the resources consumed to compute B0 and its impact on the methods
efficiency. In addition to the default B0 = In×n, we have tested 4 different possibilities for
B0, all based on a banded approximation of the Jacobian obtained from finite differences, that
is a diagonal, a 3-diagonal, a 5-diagonal and a 7-diagonal matrix. Note that a p-diagonal
approximation of the Jacobian can be evaluated with p function evaluations (Kelley 2002).

A detailed description of the results is presented in Bierlaire & Crittin (2003b) as well as the
performance profiles of all considered methods on all problems. Figure 2 plots the profile of
each instances of iGSM.
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Figure 2: Performance profiles of iGSM with different B0

It clearly emphasizes that B0 = In×n is a poor choice in terms of robustness for the method.
As anticipated the best approximation (7-diagonal) produces the most robust method as it
solves nearly 65% of the problems. But choosing a diagonal or a 3-diagonal approximation of
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the Jacobian seems to be a better compromise between efficiency and reliability. For higher
order approximation (5 or 7-diagonal approximation) the efficiency is penalized by the number
of function evaluations necessary to compute the initial Jacobian. In the following, we choose
to start iGSM with a diagonal B0. We have performed a similar analysis for ICUM. In this
case, we have decided to select the 3-diagonal B0.
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Figure 3: Head-to-Head Performance Profiles

Comparing iGSM and ICUM (Figure 3(b)), we observe that iGSM significantly outperforms
ICUM, both in efficiency and in robustness. For the comparison of iGSM with a Newton-Krylov
method, we have used a matrix-free implementation (Kelley 2002) of the GMRES method
(Saad & Schultz 1986). The behavior of the two methods (see Figure 3(a)) is comparable.
These results are confirmed when the three methods are compared together (Figure 4).

These results are very encouraging. In the quasi-Newton literature, ICUM is currently con-
sidered as one of the best methods solving large scale nonlinear systems of equations without
derivatives. The significant improvement brought by iGSM is noticeable. Moreover, Newton-
Krylov methods are recognized as the most efficient methods to date to solve large scale
problems (Kelley 2002). Therefore, the fact that our quasi-Newton approach reaches the same
level of performance is an achievement, taking into consideration that the implementation of
GMRES involves globalization techniques which is not the case for iGSM.

3.2 The Convection-Diffusion problem

To illustrate the behavior and the potential of our method, we propose to analyze more deeply
the Convection-Diffusion problem mentioned by Kelley (2002). It is is a semi-linear convection-
diffusion equation of size 961. As the problem is difficult, we use the preconditioner proposed
by Kelley (2002). The objective function is right preconditioned using a fast Poisson solver.

We analyze the impact of the population size on the efficiency of iGSM. Table 3.2 reports,
for each size of the population, the number of function evaluations and the time to reach
convergence. With a population of two iterates, the method does not converge. Clearly, using
more than two iterates significantly improves the algorithm performance, illustrating the added
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Figure 4: Three Algorithms Performance Profiles

value of our generalized approach contrasting with other classical quasi-Newton methods. More
interestingly, the performance improvement reaches a plateau around a population of 10.

Figure 5 reports the evolution of the relative residual ‖F (xk)‖
‖F (x0)‖ with the number of function

evaluations for iGSM (with 10 iterates in the population) and GMRES. Note that ICUM does
not converge on this problem. Clearly, iGSM converges faster than GMRES. Remark the
horizontal “steps” of the GMRES curve. They correspond to stages of the algorithm when
partial derivatives of F are evaluated by finite difference. Moreover the computational time
to reach convergence on this problem is 14.1 sec. for iGSM and 26.4 sec. for GMRES.

3.3 Behavior in the presence of noise

We present a preliminary analysis of the behavior of these methods in the presence of noise.
Indeed, it is an important motivation for population-based methods, as discussed by Bierlaire
& Crittin (2003a).

Following Choi & Kelley (2000), we consider a smooth deterministic system of nonlinear equa-
tions Fs(x) = 0, and define a noisy version as

G(x) = Fs(x) + φ(x) (12)

where φ(x) is a white noise such that its variance decreases in the vicinity of the solution, that
is

φ(x) ∼ N(0, α2‖x− x∗‖2), (13)

where α ∈ R.
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Population size Function evaluations Time [sec]

2 max -
3 43 30.3
4 38 26.7
5 36 26.2
6 29 21.6
7 21 15.9
8 21 16.2
9 19 14.9
10 18 14.1
11 17 14
12 18 14.9
13 18 15.4
14 18 15.6
15 19 16.8
16 19 16.9
17 19 17.3
18 19 17.4
19 19 17.2
20 19 17.2

Table 1: Impact of the size of the population on iGSM

We have selected problem [SPED12], as the behavior of GMRES, ICUM and iGSM is almost
the same in the deterministic case (see Figure 6(a)). It is defined as

{

f1 = x1,
fi = cos(xi−1) + xi − 1, ∀i = 1, . . . , n

(14)

with initial point x0 = (0, . . . , 0). In the presence of a very small noise (α = 10−9, Figure 6(b)),
we observe a slight decrease of the performance of the Newton-Krylov method, compared to
the two others which are not notably affected. It makes sense, as Newton-Krylov relies on
finite difference approximations of the derivatives, which are sensitive to the noise. When the
magnitude of the noise increases (α = 10−4, Figure 6(c)), the GMRES method is stalled at the
starting point. The ICUM method does not make much progress in the early iterations, and
starts diverging after about 15 function evaluations. A similar phenomenon is observed for the
larger noise (α = 10−1, Figure 6(d)). For this problem iGSM converges even in presence of a
high level of stochasticity.

We have also considered problems with a constant noise, that is where

φ(x) ∼ N(0, α2). (15)

In this case, the performance of Newton-Krylov is much more affected by a small noise (α =
10−9, Figure 7(b)). For the medium noise (α = 10−4, Figure 7(c)) and the large noise (α =
10−1, Figure 7(d)), we observe again the same behavior as before: Newton-Krylov is stalled,
ICUM decreases first and then explodes, and iGSM decreases to reach a level where no more
progress is made due to the definition of the problem.

These analysis emphasizes the added value of the iGSM method on the Newton-Krylov ap-
proach. If they perform similarly on deterministic problems, iGSM is much more robust in
the presence of noise.
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Figure 5: Convection-Diffusion equation

We provide similar analysis on two other problems: the Chandrasekhar H-equation residual
problem and the Broyden Banded problem in Bierlaire & Crittin (2003b).

3.4 The CARG problem

We conclude this section by analyzing a difficult problem which is both large and noisy.

Route guidance refers to information disseminated to road users with the intent of influencing
their route choice decisions. We are interested here in anticipatory route guidance where real-
time traffic conditions are used to make predictions of the evolution of the network. So the
information provided to a driver will reflect the conditions that are expected to prevail at
network locations at the times when he will actually be there.

A tricky problem in generating anticipatory route guidance is the fact the system under consid-
eration is affected by the dissemination of information. Indeed, contrarily to weather forecast,
the reactions of the users receiving the guidance can affect the future conditions of the network
and therefore invalidate the predictions on which the guidance was based. The anticipatory
guidance is said to be consistent if the predictions on which the guidance is based are the same
as those that are forecast to result after drivers react to the guidance.

This problem was introduced by Ben-Akiva, de Palma & Kaysi (1996) and a fixed point
formulation has been proposed by Bottom, Ben-Akiva, Bierlaire, Chabini, Koutsopoulos &
Yang (1999) and developed by Bottom (2000) in his PhD dissertation. This problem is defined
by:

Find x such that x = T (x) (16)
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(b) Small variance noise
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(c) Medium variance noise
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Figure 6: Behavior with stochasticity

The complexity of transportation system and the necessity of capturing traveler behavior im-
pose the use of disaggregated models and simulation-based tools to compute T . Consequently
this fixed point problems, defined in (16), is non-analytical and stochastic. Moreover x involves
a high number of variables.

Note that averaging methods defined by (1) can be considered as quasi-Newton methods where
Bk is defined at each iteration k by Bk = αkIn×n. We provide a numerical comparison between
an averaging method and iGSM to solve the consistent anticipatory route guidance problem
in order to illustrate the applicability of this method to very large scale problems. This test
has been done using DynaMIT is a state-of-the-art, real-time computer system for traffic esti-
mation prediction and generation of traveler information and route guidance. DynaMIT is the
result of about 10 years of intense research and development at the Intelligent Transportation
Systems Program of the Massachusetts Institute of Technology (for description and details, see
(Ben-Akiva, Bierlaire, Koutsopoulos & Mishalani 2002), (Bottom et al. 1999) and (Ben-Akiva,
Bierlaire, Koutsopoulos & Mishalani 1998)). DynaMIT is designed to operate in real time,
using traffic volume and control system state data to estimate and predict time-dependent
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(b) Small variance noise
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(c) Medium variance noise
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Figure 7: Behavior with stochasticity

origin-destination flows and network conditions, and generating descriptive and prescriptive
information that should be consistent with the predicted traffic conditions. DynaMIT’s con-
sistent guidance generation algorithm is currently an averaging method with αk = 0.5 for all
k. iGSM has been implemented in C++ in DynaMIT with the following parameters: as initial
approximation of the Jacobian we choose B−1

0 = In×n and the size of population is set to κ = 5.
Computations have been done with the same laptop. The network considered is large-scale
network representing the swiss highway system from Geneva to Schaffausen and is composed of
1661 links. We simulate from 7h00 to 8h15 in the morning with time interval of one minute and
analyze the guidance generation for 75 minutes. The size of the fixed point problem associated
with the CARG problem is 124’575 (1661 × 75). It appears in Figure 8 that iGSM decreases
the consistency very fast during the first iterates, after which it seems to struggle in spite of
the logarithmic scale. The averaging method reaches the same consistency about 28 iterations
later. In terms of real-time applications, the fast decreasing consistency, at the beginning,
associated with iGSM algorithm seems a very good alternative to averaging methods. More
results about the CARG are discussed in Bierlaire & Crittin (2003c).Those preliminary results
on the consistent anticipatory route guidance problem are very encouraging, principally for
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Figure 8: Swiss Network

real-time applications.
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Moré, J. J., Garbow, B. S. & Hillstrom, K. E. (1981). Testing unconstrained optimization
software, ACM Transactions on Mathematical Software 7(1): 17–41.

M.Robert, S. & Shipman, J. S. (1976). On the closed form solution of troesch’s problem, J.
Comput. Physics .

Polyak, B. T. & Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging,
SICON 30(4): 838–855.

Roose, A., Kulla, V., Lomp, M. & Meressoo, T. (1990). Test examples of systems of non-linear
equations, Estonian software and Computer Service Company .

Ruggiero, M. G., D.N.Kozakevich & J.M.Martnez (1996). A numerical study on large-scale
nonlinear solvers, Computers and Mathematics with Applications: An International Jour-
nal 32: 1–13.

Saad, Y. & Schultz, M. (1986). Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on Numerical Analysis 7: 856–869.

Sheffi, Y. & Powell, W. (1982). An algorithm for the equilibrium assignment problem with
random link times, Networks 12: 191–207.

Spedicato, E. & Huang, Z. (1997). Numerical experience with newton-like methods for non-
linear algebraic systems, Computing 58: 69–99.

Toint, P. L. (1986). Numerical solution of large sets of algebraic nonlinear equations, Mathe-
matics of Computation 46(173): 175–189.

Le Gosier, Guadeloupe, June 13-18, 2004


