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1  Introduction 

In today's business world it becomes more prevalent to lease the transportation and storage 
activities as well as other related services of a supply chain to an external third party logistics 
(3PL) service provider. The use of 3PL started in the 1980's but has grown significantly in 
recent years. Today many businesses prefer to lease several of their activities to a single 3PL 
company by a long-term commitment, see e.g., Leahy et al. (1995). However, as it is well 
recognized today, mainly large firms as Minnesota Mining & Manufacturing Co. (3M), Eastman 
Kodak, Dow Chemical, Time Warner and Sears Roebuck are leasing large parts of their 
logistical activities to 3PL providers. Small companies tend to be more skeptical regarding the 
advantage of using 3PL, see e.g., Simchi-Levi et al. (2000). One of the main reasons for this 
reservation of small companies is related to the cost schemes, which often contain some 
economies of scale benefits that cannot be exploited by small firms.  

In the last two decades, the importance of combining forces within a supply chain has been 
strongly recognized by the OR/MS community as well as by practitioners. As a result, the body 
of research on joint replenishment problems has flourished. The main emphasis of this research 
has been on minimizing total system-wide costs. However, once the total cost is minimized, a 
further question has to be asked, which is how to allocate this cost among the various parties in 
the supply chain. The cost allocation problem is important for cost accounting purposes as well 
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as for enabling the management to decide upon the profitability of the various entities in the 
supply chain. The cost allocation scheme should be fair in the sense that no facility would feel 
as subsidizing the others.  Sharkey (1995) provides an excellent review of cost allocation 
problems in the context of transportation models.         

In this research we focus on the cost allocation problem of an infinite-horizon single warehouse 

joint replenishment model, where retailers in the set n },...,1{ nN =  lease the transportation of 

their supplies as well as their storage activities to a 3PL provider. The cost structure considered 
here is as follows: Each time a delivery is requested by any subset of the retailers, a fixed 

transportation cost , called major transportation setup cost, is incurred. Moreover, each 

retailer  is associated with a minor fixed transportation cost  that is retailer dependent, and 

is possibly a function of the distance or the travel time between the warehouse and the retailer. 

Thus, if a set of retailers , , orders simultaneously the transportation cost 

incurred is     

0K

i iK

S NS ⊆⊂Φ

∑
∈

+
Si

iKK 0     (1) 

Demands at the retailers are assumed to be deterministic at a constant rate. In addition to the 
transportation costs, the 3PL provider is paid for holding  stocks at depots in the retailers' sites.  

The optimization problem associated with the above model is to determine when to place orders 
for the various retailers, and what are the quantities to ship when replenishments take place. The 

goal is to minimize the total average-time transportation and storage costs. Had , the 

problem would be in fact of n independent EOQ (Economic Order Quantity) problems. The 

case where  makes the optimization problem more intriguing, as it calls for coordination 

of the timing of the various transportation activities for the sake of placing joint replenishments. 
The model considered here with joint transportation setup cost of the form (1), is known in the 
literature as the first order interaction model, see Federgruen and Zheng (1995). More involved 
cases are considered in the literature. For example, see Federgruen and Zheng (1992), and 
Federgruen et al. (1992). We also like to mention Meca et al. (2003) which deal with the special 
case where the minor transportation setup costs are zero for all retailers in .  
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The first order interaction model described above is the simplest model that involves 
cooperation among the retailers. In spite of its relative simplicity, the structure of optimal 
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policies for this problem is yet unknown, except for the Zero-Inventory-Ordering (ZIO) 
property, which insures that under any optimal replenishment policy, each retailer orders only 
when its inventory level is zero. In view of its complexity, practitioners resort to suboptimal 
policies which are efficient in terms of the computational effort and which have some 
guaranteed deviation from the optimal average-time total cost. In particular, we refer here to 
policies in which ordering of retailer i  takes place in equi-distant time intervals of length 

Bim2  for some integer nimi ≤≤1,  , and for some base time-unit B . Such policies are 

called power-of-two (POT) policies. They are known, see Jackson et al. (1985), to yield an 
average-time total cost which is at most 6% higher than the optimal average-time total cost. By 

optimizing over B , , the worst-case gap can be reduced to 2%, see Roundy (1985). 

Our cost allocation results hold for any fixed value of 

)2,1[∈B

B , )2,1[∈B , and in particular for the 

optimal one. For the sake of simplicity we assume that time units are scaled so that 1=B . 

The natural question to be asked after solving for an optimal POT is how the retailers should 
split the total costs among themselves. Many options exist here. For example, a naïve allocation 
can be that all pay their holding costs and whenever an order is placed, all ordering retailers pay 
their minor transportation costs, and share evenly the major transportation cost. This scheme 
has the advantage of being simple, aesthetic and maybe easy to be argued for on non-theoretical 
grounds. Yet it is possible that some retailers may feel that they pay more than others towards 
the common goal of minimizing the total social costs. In fact, they may end up subsidizing the 
others. Thus, a more systematic approach is needed. We define a cooperative transferable utility 
game representing the above posed allocation problem and suggest the application of a game-
based cost-sharing rule, the core. We show that the resulting game is concave, and we give an 
example of a core allocation. We also prove that the core contains infinitely many allocations. 

Section 2 of this extended abstract contains some notation and preliminaries. Section 3 covers 
our main results. The proofs can be found in the working paper, see reference. 

2  Notation and Preliminaries 

Let  the set of retailers.  is the major transportation setup cost. 

Retailer ,1 , is associated with the following parameters: -  its minor transportation 

},...,2,1{ nN =

i ni ≤≤
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setup cost;   -  its holding cost rate, and  -  its demand rate; We also let  to be 

its holding cost parameter. Finally, we assume zero lead times. Identical lead times can be 
handled similarly.  W.l.o.g. we assume that the retailers in N are indexed in a non-decreasing 

order of , i.e., 
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 Note that , and let 

. From Jackson et al. (1985) we learn that the optimal POT policy for the 

retailers in  is as follows: The retailers in order simultaneously every time units, 

where  is the integer POT closest to 
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 is the unique integer that satisfies the inequality . We denote 

the POT reorder interval of , namely by . If 

0m

T

2

min
0S 02m <)*

j ∈

(

'
jiτ

S

, then each of the 

retailers i orders at most as frequently as the set ; Indeed, each time such a retailer 

orders, also the set  orders (but not the other way around). In fact, a retailer i ,  

orders at times as prescribed by its individual EOQ model, i.e., at , rounded to the closest 

integer POT, named T . The optimal average-time total costs of , under the restriction to 

POT policies, namely 

0
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 defines a cooperative game with transferable utility. Moreover, as 

for any coalition , , N⊆ )(N)\ S()( NS ννν ≥+ , the formation of the grand 

coalition is a natural outcome from a bargaining process. The question we pose is how to 

allocate the cost )(Nν  among the retailers. In other words, we look for a cost sharing (or 

Pareto efficient) solution concept. For this sake we refer to the following definitions. A game  

),( νN
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 is said to be concave if the following property holds: 
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A vector is said to be a core allocation for the game ,N , if ∑  and if 

for any set of retailers  with , . A game is called balanced if its 

core is not empty and it is called totally balanced if all the games with the same characteristic 
function but restricted to subsets of players, are balanced too. It is well known that a concave 

game is totally balanced. In this research we show that ( )ν is a concave game and we 

present a core allocation. We also prove that the core contains infinitely many allocations. 
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3  Our results 

Theorem 1:  the transferable utility cooperative game with as its set of players and with N

)(Sν , , as its characteristic function, is concave. In particular it is totally 

balanced. 

NS ⊆⊆Φ

We next describe a core allocation, which we find appealing. Establishing that the suggested 
allocation is indeed a core allocation can be considered as an alternative proof for the 
balancedness of the game. Yet recall that Theorem 1 says more than just balancedness.  Let 
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Theorem 2:  The cost allocation specified in (3)-(5) is a core allocation, under which all 
retailers pay their own minor transportation setup cost and holding cost and each retailer in 

,  pays part of the major transportations setup cost. Moreover, the allocation of the major 

transportation setup cost is non-increasing in 

0N

., Njj ∈   In particular,  retailers in  do  

not pay anything towards the major transportation setup cost. 

0N

Theorem 3: There are infinitely many core allocations. 

Le Gosier, Guadeloupe, June 13–18, 2004 



TRISTAN V : The Fifth Triennal Symposium on Transportation Analysis                           7 

On the face of it, the core allocation proposed in (3)-(5) and the ones constructed in the proof of 

Theorem 3, see paper, suffer from two drawbacks. The first is that the set of retailers  

seems not to pay its fair-share of the major transportations setup cost. In fact, as it pays (almost) 

nothing against , it can be looked at as a set of free riders. The second possible drawback is 

the fact that each retailer pays the direct holding cost it inflicts under the prescribed policy. This 

can be seen as unfair by the retailers in since their actual replenishment interval 

might be significantly larger than their unconstrained interval. As a result the retailers 

in  may pay a greater holding cost than what they would have paid had .

0\ NN

0K

0N

)(min NT

0N 00 =K   

References 

Anily S. and M. Haviv, "The Cost Allocation Problem for the First Order Interaction Joint 
Replenishment Model", Working Paper, Faculty of Management, Tel-Aviv University, Tel –
Aviv, Israel 69978,  2003. 

Federgruen, A. and Y.S. Zheng, "The Joint Replenishment Problem with General Joint Cost 
Structures", Operations Research  40, 384-403, (1992). 

Federgruen, A.  and Y.S. Zheng, "Efficient Algorithms for Finding Optimal Power-of-Two 
Policies for Productive/Distribution Systems with General Joint Setup Costs", Operations 
Research 40, 384-403, (1995).  

Federgruen, A., M. Queyranne and Y.S. Zheng, "Simple Power-of_two Policies are Close to 
Optimal in General Class of Production/Distribution Networks with General Joint Setup Costs",  
Mathematics of Operations Research 17, 951-963, (1992). 

Jackson, P., W. Maxwell and J. Muckstadt, "The Joint Replenishment Problem with a Powers-
of-Two Restriction",  IIE Transactions 17, 25-32, (1985). 

Leahy, S., P. Murphy and R. Poist, "Determinants of Successful Logistical Relationships: A 
Third Party Provider Perspective", Transportation Journal 35, 5-13, (1995). 

Le Gosier, Guadeloupe, June 13–18, 2004 



TRISTAN V : The Fifth Triennal Symposium on Transportation Analysis                           8 

Le Gosier, Guadeloupe, June 13–18, 2004 

Meca, A. J. Timmer, I. Garcia-Jurado and P. Borm, "Inventory Games", European Journal of 
Operational Research, (to appear). 

Roundy, R., "98% Effective Integer Lot Sizing for One Warehouse Multi Retailer Systems", 
Management Science  31, 1416-1430, (1985). 

Sharkey, W.W., "Networks Models in Economic", Network Routing - Handbooks in OR & MS, 
Vol. 8 (Chapter 9), eds. M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser (1995).  

Simchi-Levi, D., P. Kaminsky and E. Simchi-Levi, "Designing and Managing the Supply 
Chain",  Irwin McGraw-Hill, (2000). 


