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1 Introduction

The dynamic traffic assignment problem relies on an accurate model for evaluating traffic
delays. This paper derives an analytical function of the travel time, based on the theory of
kinematic waves, starting with a single stretch of road and subsequently generalizing over
a network. The travel time function integrates traffic dynamics and the effects of shocks.
Numerical examples illustrate the quality of the analytical travel time model in comparison
with simulated ones from the literature.

Dynamic traffic assignment models either simulate flow propagation (see Newell 1993, Daganzo
1994, Mahut 2000 and Khoo et al. 2002) or rely on an analytical travel time function (e.g., see
Ran and Boyce 1994). Using an analytical travel time function allows studying the convergence
behavior of algorithms.

A lot of research has been devoted to identifying the variables that affect travel time (see Ran
and Boyce 1994, Daganzo 1995a and Carey et al. 2003). However, very few models propose
a functional form of the travel time. Based on the kinematic wave model of Lighthill and
Whitham (1955) and Richards (1956), Kachani and Perakis (2001) proposed a polynomial
and an exponential travel time functions when there is no congestion. Using the simplified
model of Newell (1993), Kuwahara and Akamatsu (2001) derived an analytical function for
the instantaneous travel time integrating congestion effects.

In this paper, we extend the work by Kuwahara and Akamatsu (2001) and derive an analytical
function of the experienced, instead of instantaneous, travel time. We also extend the work
by Kachani and Perakis (2001) by integrating congestion effects into the travel time function.
The main contributions of our model are the following:
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• the methodology applies to both triangular and quadratic fundamental diagrams;

• the travel time function integrates first-order traffic dynamics, shocks and queue spillovers;

• from our numerical experiments, the proposed analytical travel time function behaves
similarly to the travel times obtained by simulation.

In Perakis and Roels (2004), we extend our results from a single stretch of road to a general
network. Furthermore, we incorporate the travel time model into a Dynamic User Equilibrium
setting in order to determine the equilibrium flows.

2 Review of the Theory of Kinematic Waves

In this section, we review the hydrodynamic theory of traffic flow, proposed by Lighthill and
Whitham (1955) and Richards (1956). Because of the dynamic nature of traffic, we work on a
time-space setting. The time origin is set to t0 and the road has length L. The fundamental
traffic variables to describe traffic conditions on a road are (1) the flow rate, f(x, t), which is
the number of vehicles per hour passing location x at time t, (2) the rate of density, k(x, t),
which is the number of vehicles per mile, at location x at time t, and (3) the instantaneous
velocity, u(x, t), which is the speed of vehicles passing location x at time t. In what follows,
we assume that the road is characterized by the maximum speed umax, the maximum density
kmax, and the capacity fmax on that road.

Notice that the definition of the fundamental traffic variables implies that f(x, t) = k(x, t)u(x, t).
Most models assume a one-to-one relation between the speed and the density, i.e., u(x, t) =
u(k(x, t)). Therefore, the flow and the density are related through the so-called fundamental
diagram:

f(x, t) = k(x, t)u(k(x, t)) ∀x, t. (1)

Depending on the assumed speed-density relationship u(k), the fundamental diagram can
have different shapes. In the following, we analyze the two most common shapes, namely the
quadratic and the triangular fundamental diagrams.

If the vehicle velocity depends linearly on density, i.e. u(k) = umax(1−k/kmax), as in Richards
(1956), the fundamental diagram has a quadratic shape:

f(x, t) = k(x, t)umax(1 − k(x, t)/kmax). (2)

On the other hand, Newell (1993) proposed a triangular curve with a left slope of u0 and a
right slope of −w0. The change of slope occurs when the flow is at capacity.

f(x, t) =

{

k(x, t)/u0 if k(x, t) ≤ fmaxu0,
(kmax − k(x, t))/w0 otherwise.

(3)

In addition to (1), the traffic variables are related through a conservation law, stated as the
following partial differential equation:

∂k(x, t)

∂t
+

df(k)

dk

∂k(x, t)

∂x
= 0. (4)
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This relation describes the fact that, on a single stretch of road, no cars are lost.

The standard way of solving (4) is the method of characteristics. Along a characteristic line,
the density (and therefore the flow) remains constant. The slope of a characteristic line,
df/dk, is positive when the traffic is light, and negative when the traffic is heavy. According
to the theory of kinematic waves, a characteristic line is the trajectory of a wave, propagating
forwards or backwards, and conveying constant flow. If two characteristic lines intersect, the
density around the point of intersection is discontinuous. The set of such points of intersection
is called a shock wave. For instance, the sudden change in traffic conditions around the shock
wave may be due to an accident or a downstream bottleneck capacity.

3 An analytical derivation of the travel time function

3.1 Assumptions

Because of the discontinuity induced by shocks, the kinematic wave model may be quite hard
to solve. In what follows, we introduce three assumptions that simplify the model.

Assumption A1 - At most one shock We assume that there is at most one shock on
the road. As in Newell (1993), we assume that a shock can only result from the focusing of
one forward and one backward wave. Accordingly, we can divide a road into two segments,
separated by the shock wave: on the first segment, the traffic flow has a low density, whereas
on the second, it has a high density. Note that the length of each segment depends on traffic
conditions and is therefore time-varying.

Assumption A2 - Linear density We assume that the second-order variation of density is
locally negligible (which is always true for small road lengths). Accordingly, the density at
location x at time t can be approximated with k(x, t) = k(ξ, t) + B(ξ, t)(x − ξ), where ξ = 0
if the traffic conditions at (x, t) are light, and ξ = L if they are heavy.

Assumption A3 - Smooth dynamic effects In addition, we require the dynamic effects
to be smooth. If the evolution of traffic flow is highly variable, we can relax this assumption
by considering smaller road lengths. Mathematically, we impose the condition that |B(ξ, t)| <
(kmax − k(ξ, t))2/(5Lkmax), for ξ = 0 or L.

3.2 Methodology

From assumption A1, the road can be decomposed into two segments, separated by the shock
wave. As a result, the total travel time can be computed as the sum of (1) the travel time to
go from the entrance to the shock wave (under light traffic conditions), and (2) the travel time
to go from the shock wave to the road exit (under heavy traffic conditions).

In particular, we consider a vehicle that starts its trip at time t0, on a road of length L. We
denote by τ(x) its travel time to reach location x. Let T be the travel time of the vehicle to
reach the exit, if there was no shock; however, because of the shock, its total travel time will
be significantly larger.
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Shock location Newell (1993) introduced the concept of cumulative number of vehicles pass-
ing through location x by time t. He showed that, along a characteristic line, the cumulative
number of cars evolves linearly. If the characteristic line has positive slope, the cumulative
number of vehicles along this characteristic line depends on the traffic conditions at the en-
trance and is denoted by A(x, t). Symmetrically, if the characteristic line has negative slope,
the cumulative number of vehicles along the characteristic line depends on the traffic conditions
at the exit and is denoted by D(x, t).

At the intersection of two characteristic lines, the cumulative number of cars is multivalued.
Newell argued that the correct value is the minimum between A(x, t) and D(x, t), and that
the path of intersection, A(x, t) = D(x, t), is the shock. Plugging the vehicle’s trajectory
(x, t0 + τ(x)) into the shock wave equation, A(x, t) = D(x, t), gives rise to the point (x̂, t0 + τ̂)
at which the vehicle goes through the shock.

Travel time function in light/heavy traffic From the fundamental diagram (1), the instan-
taneous vehicle’s velocity at (x, t) is the ratio between the flow and the density. Accordingly,
the vehicle’s trajectory (x, t0 + τ(x)) evolves as follows:

dτ(x)

dx
=

1

u(x, t + τ(x))
=

k(x, t0 + τ(x))

f(x, t0 + τ(x))
. (5)

From the flow-density curve (2) or (3), f(x, t0 + τ(x)) can be expressed as a function of
k(x, t0 + τ(x)). Therefore, the right hand side of (5) only depends on the density. Using
assumption A2, we obtain an ordinary differential equation (ODE) to describe the evolution
of the travel time. This ODE, together with the initial condition τ(0) = 0, can be solved with
a power series solution. Under assumption A3, the ratio between two successive terms in the
power series is bounded above by 1, and the series converges.

For the heavy traffic region, the methodology for computing the travel time is similar, but
takes (L, t0 + T ) as a reference point, instead of (0, t0). In addition, the boundary condition
refers to the shock location on the vehicle’s trajectory, i.e. τ(x̂) = τ̂ .

In what follows, we apply this general methodology to the triangular and the quadratic rela-
tions between the flow and the density.

3.3 Triangular fundamental diagram

Theorem 1 With a triangular fundamental diagram, under assumptions A2 and A3, the
travel time of a vehicle entering the road at time t0 is

τ = x̂u0 +
(k(L, t0 + T )w0 − B(L, t0 + T )(L − x̂)(u0 + w0))w0

(kmax − k(L, t0 + T ))w0 + B(L, t0 + T )(w0 + u0)(L − x̂)
(L − x̂) + O(

Lw0k(L, t0 + T )

50(kmax − k(L, t0 + T ))
), (6)

where x̂ = x̂ = L − A(0,t0)−D(L,t0+T )

k(L,t0+T )−(kmax−k(L,t0+T ))
u0

w0

.

In Figure 1, the analytical travel time (6) behaves similarly to the travel time obtained by
simulation using the Cell Transmission Model (CTM) by Daganzo (1994). In this example, we
considered a quadratic entering flow rate, f(0, t) = 1600 − 6400(t/3600 − 0.5)2 vehicles/hour
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for t = 1, .., 3600 seconds. The fundamental diagram is symmetric triangular, with u0 = w0 =
1/umax = 1/40 hour/mile, kmax = 200 vehicles/mile, fmax = 4000 vehicles/hour. The road
has a length of 4 miles and has a bottleneck at its end authorizing only 1400 vehicles/hour to
exit the road.
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Figure 1: Evolution of the travel time with the departure time, when the entering flow is
quadratic. Comparison of (6) with the CTM for a triangular fundamental diagram

3.4 Quadratic fundamental diagram

Theorem 2 With a quadratic fundamental diagram, if there is no shock, and under assump-
tions A2 and A3, the travel time of a vehicle entering a road of length x at time t0 is given
by

τ(x) =
x

umax(1 − k(0, t)/kmax)
+

1

2

B(0, t)k(0, t)x2

(kmax)2umax(1 − k(0, t)/kmax)3
+ O(

L

50umax
). (7)

Theorem 3 With a quadratic fundamental diagram, under assumptions A2 and A3, the total
travel time of a vehicle entering the road at time t0 is

τ = τ̂ +
kmax + 2umax(T − τ̂)B(L, t0 + T )

umax(kmax − k(L, t0 + T ) + B(L, t0 + T )(L − x̂ + umax(T − τ̂)))
(L − x̂) + O(

Lk(L, t0 + T )

50umax(kmax − k(L, t0 + T ))
), (8)

where x̂ = L−(A(0, t0)−D(L, t0+T )) kmax−k(0,t0)
k(L,t0+T )(k(L,t0+T )−k(0,t0)) is the shock location, T = τ(L),

τ̂ = τ(x̂) according to (7).

In Figure 2, we compared the analytical travel time (8) with the travel times obtained by
simulation, with or without congestion (right and left figures, respectively). We considered
the same quadratic entering flow rate as in the triangular case. The road has the same
characteristics as in the triangular example, but has a capacity of f max = 2000 cars/hour.

When there is no bottleneck at the exit of the road, there is no congestion, and the analytical
travel time function (8) behaves similarly to the travel times simulated using the procedures
described in Khoo et al. (2002) and Daganzo (1995b). In contrast, the analytical travel time
proposed by Kachani and Perakis (2001) tends to underestimate the simulated travel times.
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With the introduction of a bottleneck at the road exit of the road of 1500 cars/hour, the travel
time is affected by congestion. As shown in the right figure, the analytical travel time (8)
depicts the same behavior as the travel time simulated with Finite Difference Equation model
of Daganzo. A comparison of the left and right figures illustrates how congestion can affect
travel time.
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Figure 2: Evolution of the travel time with the departure time, when the entering flow is
quadratic. Comparison of (8) with simulated travel times for a quadratic fundamental diagram

In Perakis and Roels (2004), we extend this methodology to compute the experienced travel
time of a vehicle on a general network, and incorporate it into a Dynamic User-Equilibrium
setting.
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