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1 Introduction

Vendor managed inventory resupply (VMI) has become a popular strategy to reduce inventory
holding and/or distribution costs. In environments where VMI partnerships are in effect, the
vendor is allowed to choose the timing and size of deliveries. In exchange for this freedom,
the vendor agrees to ensure that its customers do not run out of product. Realizing the cost
savings opportunities of VMI partnerships, however, is not an easy task, particularly with
a large number and variety of customers. The inventory routing problem (IRP) seeks to do
exactly that: determining a distribution strategy that minimizes long term distribution costs.
A large body of literature on the IRP exists.

We do not focus on developing distribution strategies, but instead on measuring the effective-
ness of distribution strategies. A popular performance measure used in practice to evaluate
distribution strategies in an environment where VMI partnerships are in effect is the volume
delivered per mile. As the volume that needs to be delivered by the vendor over a given period
of time is determined by the total usage of its customers, and not under the control of the
vendor, the vendor strives to minimize the total mileage required to deliver product. However,
volume per mile by itself is not a meaningful number, because it is impacted by many factors,
such as the geography of customer locations and customer usage patterns, but it is valuable
for comparing performance in consecutive periods of time. If a company has a stable customer
set and customer usage patterns do not fluctuate much, then an increase (decrease) in volume
per mile indicates that distribution planning is improving (worsening).

The above discussion shows that volume per mile is a useful measure for monitoring relative
distribution strategy performance. However, volume per mile cannot be used to determine,
in an absolute sense, the quality of a distribution strategy. We develop a methodology that
allows the computation of tight lower bounds on the total mileage required to deliver product
over a period of time (and thus upper bounds on volume per mile). As a result, companies
will be able to gain insight into the effectiveness of their distribution strategy.
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2 A Simple Bound

Consider the following variant of the inventory routing problem. A single product has to be
distributed from a single facility to a set I of n customers over a period of time of length
T . Each customer i ∈ I has the capability to maintain a local inventory of product up to a
maximum of Ci. In the period of interest customer i consumes an amount ui of product. A fleet
of homogeneous vehicles, with capacity Q, is available for the distribution of the product. We
assume an unlimited supply of product and an unlimited number of vehicles in the fleet. We
denote the travel distance between two locations i and j by tij . The objective is to determine
the minimum total distance required to satisfy all demand. Observe that when Ci ≥ Q ∀i ∈ I,
then the optimal distribution strategy is to always deliver a full truck load to a customer right
when the customer’s storage tank becomes empty. The resulting total distance is

∑

i∈I
ui

Q
2t0i,

where 0 denotes the plant. Therefore, a simple lower bound on the minimum total distance
required to satisfy all demand is obtained by assuming that all customers’ storage capacities
are greater than the truck capacity, i.e.,

LB1:
∑

i∈I

ui

Q
2t0i

3 An Improved Bound

In practice, deliveries to customers with storage capacity less than the truck’s capacity, i.e.,
Ci < Q, are usually combined with other deliveries to ensure a high utilization of the truck’s
capacity.

Define a feasible delivery pattern Pj = (dj1, dj2, ..., djn) to be a delivery pattern that satisfies
∑

i∈I dji ≤ Q and 0 ≤ dji ≤ Ci ∀i ∈ I. Let δ(Pj) = {i ∈ I : dji > 0} denote the set of
customers visited in delivery pattern Pj . The cost of delivery pattern Pj, denoted as c(Pj), is
the value of an optimal solution to the traveling salesman problem involving the plant and the
customers in δ(Pj). Let P be the set of all feasible delivery patterns and let xj be a decision
variable indicating how many times delivery pattern Pj is used. Then the optimal objective
function value of the following linear program, called the pattern selection LP, provides a lower
bound on the total distance required to satisfy the demand

D∗ = min
∑

Pj∈P

c(Pj)xj

s.t.
∑

Pj∈P

djixj ≥ ui, ∀i ∈ I

xj ≥ 0

There are two major obstacles to using this linear program:

• The number of feasible delivery patterns is prohibitively large.
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• The calculation of the cost of each delivery pattern involves the solution of a traveling
salesman problem.

Below, we discuss how these obstacles can be handled in practice. We start by showing that
a much smaller set of feasible delivery patterns can be considered when solving the linear
program.

Definition 1. (Base Pattern) A feasible delivery pattern P is a base pattern if at most one
customer, say k, in δ(P ) receives a delivery quantity less than min(Ck, Q), and, in that case,
the delivery quantity is Q −

∑

i∈δ(P )\{k} Ci.

Theorem 1. The base patterns are sufficient to find an optimal solution to the Pattern Se-
lection LP.

Now that we have significantly reduced the number of delivery patterns, we turn our attention
to the number of customers visited in a delivery pattern as that impacts the effort required to
compute the cost of a delivery pattern.

For any natural number k, let C ′
i = Q

k
if Ci < Q

k
, C ′

i = Ci if Q
k

≤ Ci ≤ Q, and C ′
i = Q if

Ci > Q. Observe that with these modified storage capacities a base pattern contains at most
k customers. Let LBk denote the optimal value of the pattern selection LP with base patterns
based on the modified storage capacities. It is easy to see that LBk provides a lower bound
on D∗ for every k and that LB1 ≤ LB2 ≤ LB3 ≤ .... Finally, when Q

k
≤ min{C1, C2, ..., Cn},

then LBk = D∗.

For any natural number k, we can also compute an upper bound UBk on D∗, as follows. We
let UBk be the optimal objective function value of the pattern selection LP in which we only
consider base patterns with at most k customers. It is easy to see that UB1 ≥ UB2 ≥ UB3 ≥ ...

and that when k ≥
⌈

Q
min{C1 ,C2,...,Cn}

⌉

, then UBk = D∗.

Our computational experiments have shown that tight bounds are obtained for values k = 3
and k = 4, in the sense that the gap between LBk and UBk is very small. Furthermore,
for values k = 3 and k = 4, the traveling salesman problems that have to be solved involve
at most 4 and 5 cities, respectively, and thus can be solved relatively easily by enumeration.
Our computational experiments have also shown that even though we have significantly re-
duced the number of delivery patterns in the pattern selection LP by restricting ourselves to
base patterns, the number of base patterns can still be huge (22,575,528 base patterns were
generated to compute UB4 for one of our larger instances). To be able to handle such large
instances effectively, we have developed two additional techniques.

So far, we have only exploited feasibility considerations to reduce the set of delivery patterns
that need to be considered. Next, we will show how optimality considerations can be exploited
effectively to reduce the set of delivery patterns that need to be considered. Consider a base
pattern P = {d1, d2, . . . , dn} and the following linear program, called the dominance LP,

z = min
∑

{j:δ(Pj)(δ(P )}

c(Pj)λj

s.t.
∑

{j:δ(Pj)(δ(P )}

djiλj ≥ di, ∀i ∈ δ(P )
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λj ≥ 0

If z ≤ c(P ), then the base patterns with λj > 0 collectively dominate the base pattern P and
base pattern P can be eliminated from the pattern selection LP. However, even though the
size of a dominance LP is small, setting up and solving it for every base pattern to determine
if the base pattern is dominated is computationally prohibitive. Therefore, we rely on easily
computable upper bounds on the optimal value of a dominance LP for dominance testing; if
z ≤ zUB ≤ c(P ), where zUB denotes an upper bound on z, then the base pattern is dominated
and can be eliminated. We compute upper bound zUB by restricting our attention to carefully
selected subsets of patterns.

Next, we observe that a pattern selection LP has a large aspect ratio, i.e., a large ratio of
number of columns to number of rows. Linear programs with large aspect ratios occur fre-
quently when set partition or set covering formulations are used to model practical situations,
for example in air crew scheduling applications. We have developed a specialized linear pro-
gramming solver exploiting the fact that most variables will have a zero value in an optimal
solution have been developed for such problems. The optimizer solves the LP with only a
subset of the full set of variables (assuming a zero solution value for each of the remaining
variables). From the solution to this partial LP, the reduced costs of the remaining variables
can be computed. Variables with reduced costs less than zero are added to the partial LP and
the partial LP is resolved and the process repeats. If no negative reduced cost variables exist,
then the current solution is an optimal solution to the full problem.

4 Computational Experiments

We conducted various computational experiments to analyze the effect on the lower bound
on the minimum total mileage required to satisfy demand of explicitly taking varying storage
capacities into account. The data used in our experiments had usage information for about
2000 customers served from 36 plants (with the smallest plant serving about 10 customers and
the largest plant serving about 150 customers). Each customer is supplied from one particular
plant. Consequently, we are dealing with independent 36 instances. (The data was provided
by Praxair Inc., a producer and distributor of industrial gases and long-time member of the
Leaders in Logistics program at Georgia Tech.)

The primary experiment involved computing increasingly tighter lower and upper bounds on
D∗ the bound on the minimum total mileage required to satisfy demand. The results are
displayed in 1.

First, the results shows that limiting ourselves to patterns with at most three or four customers
is sufficient to obtain tight bounds on D∗. Second, the results show that allowing more
deliveries per trip has a substantial effect on the upper bound, but hardly any effect on the
lower bound. The latter result was somewhat counter to our expectations, but has important
implications because it suggests that investing in larger storage facilities at customers, which
is often discussed as a potential way of reducing distribution costs, may not deliver the desired
savings. Finally, by comparing the actual incurred mileage to LB4 over a period of time,
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Figure 1: Lower and upper bounds on D∗

Praxair will gain insight in the effectiveness of its distribution strategy and in the potential
savings that may result from improvements to its distribution strategy.

Next, we investigated whether the behavior observed for the complete system is also observed
at the individual plant level. We found that for bounds LB4 and UB4 the largest relative gap
is 2.53% for Plant 18 and the smallest relative gap is 0.02% from Plant 1. To understand the
cause of the differences, we examined these plants in more detail. Two factors clearly impact
the difference between the value of LB4 and UB4:

• The number of customers with Ci < Q
4

• The number of times we have to make deliveries to customers with Ci < Q
4

Note that when all customers served by a plant have Ci ≥ Q
4 , then we have LB4 = UB4.

When we look more closely at Plant 1, we see that when a direct delivery policy would be
employed, the number of deliveries is 568.4 (computed as

∑

i
ui

min(Ci,Q)). Among these 554.0

correspond to deliveries to customers with Ci ≥
Q
4 , i.e., 97.5% of the total number if deliveries.

On the other hand, for Plant 18 the number of deliveries is 163.8 when a direct delivery policy
is employed, out of which 100.9 correspond to deliveries to customers with Ci ≥

Q
4 , i.e., only

61.6% of the total number of deliveries.

Le Gosier, Guadeloupe, June 13-18, 2004


