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1 Introduction

While the most popular sensitivity analysis tools for traffic equilibrium (TE) models are tech-
nically accessible and have managed to bring the field to practitioners, the tools are often
inapplicable because of their strong requirements, and they are also impractical for use with
large-scale networks. In the case of the formula constructed in [ToF88], there are examples
where it does not produce any results and yet the equilibrium link flow is differentiable. In the
case of the analysis presented in [CSF00], the sensitivity analysis also only works in restrictive
circumstances and the computational formula is complicated. The in our opinion natural sen-
sitivity analysis tool retains the structure of the original TE model, and the tool is therefore
easy to construct by suitably (and mildly) adjusting an efficient TE solver: the computational
formula for a directional derivative (and/or, partial gradient) is based on a linearization of the
original model around the fixed perturbation, and is an affine traffic equilibrium model over a
restriction of the original traffic network.

The paper has the following aims: (1) to provide simple (and not at all contrived) examples
that we hope will convince the users of traffic equilibrium models to utilize the more widely
applicable formulas presented here; (2) to show exactly when, and how, the correct formula can
be applied, both for deterministic/logit-based, separable/non-separable and fixed/elastic de-
mand models, and not only for equilibrium link flows but for travel costs and demands as well;
(3) to apply it to a classic network design problem, thereby reaching interesting conclusions
on the use of descent algorithms for bilevel programming applications in transport. The paper
summarizes the published papers [PaR03, Pat04] and some forthcoming work ([JoP03, Pat05]).

2 Sensitivity analysis of variational problems

Consider the variational inequality (VI) problem

−f(ρ, x) ∈ NC(x),
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where ρ ∈ <d is the parameter, x ∈ <n is the solution, f : <d×<n 7→ <n is a smooth function,
C ⊆ <n is a nonempty polyhedral set, and NC is the normal cone mapping to C, that is,

NC(x) =

{
{ z ∈ <n | zT(x − y) ≤ 0, ∀y ∈ C }, x ∈ C,

∅, x /∈ C.

This is a VI parameterized by ρ. We focus our attention on the generalized differentiation of
the solution mapping

S : ρ 7→ S(ρ) := {x | −f(ρ, x) ∈ NC(x) }

at a pair (ρ∗, x∗) with x∗ ∈ S(ρ∗).

The parameterization is presumed to be done in such a way that

rank∇ρf(ρ∗, x∗) = n, ∇ρf(ρ∗, x∗) ∈ <n×d.

(This property can always be enforced.) The proto-derivative of S at ρ∗ for x∗ in the direction
of ρ′ is the solution to the auxiliary VI

DS(ρ∗ | x∗)(ρ′) :=
{

x′ | r(ρ′, x′) + NK(x′) 3 0n
}

, where

r(ρ′, x′) := ∇ρf(ρ∗, x∗)ρ′ + ∇xf(ρ∗, x∗)x′ and K := TC(x∗) ∩ f(ρ∗, x∗)⊥.

(For a vector z ∈ <n, z⊥ := { y ∈ <n | zTy = 0 }.) The set K in the above definition is the
critical cone associated with the variational inequality (2) for ρ = ρ∗ and x = x∗. The above VI
is a local linearization of the original problem. The main theoretical results for the directional
differentiability of the solution x are given in [DoR01]. An equivalence result holds, which states
that S is single-valued and Lipschitz continuous on some neighbourhood of ρ∗ if and only if
DS(ρ∗ | x∗) is single-valued on some neighbourhood of 0d (hence everywhere). Moreover, then
S is semi-differentiable at ρ∗ for x∗, and DS(ρ∗ | x∗) is not only Lipschitz continuous and
positively homogeneous but also piecewise linear. Moreover, the semi-differential (directional
derivative) mapping DS is linear if and only if S is differentiable, in which case DS(ρ∗ |
x∗)(ρ′) = ∇S(ρ∗)Tρ′. Hence, the gradient of S at ρ∗ then is obtained as the d coordinate-
directional derivatives DS(ρ∗ | x∗)(ei), where ei (i = 1, . . . , d) is the ith unit vector.

Finally, differentiability is equivalent to DS(ρ∗ | x∗)(ρ′) ∈ −K for every ρ ∈ <d ([Kyp90]). We
apply and refine these results below.

3 Traffic (Wardrop) equilibrium

In order to apply the above theory, we formulate the traffic equilibrium model following the
notation of [Pat05]. G = (N ,L) is the network, where N and L are the sets of nodes and
directed links. C is a subset of N ×N , denoting the set of OD pairs (p, q). For each such pair,
we have a demand function gpq(ρ, ·) : <|C| 7→ <+, which is nonnegative and upper bounded
and its negative strictly monotone (hence invertible). The routes in OD pair (p, q) are denoted
by Rpq, and their flow by hpqr. The cost of travel on route r is cpqr(ρ, h). With

Hd :=
{

(h, d) ∈ <
|R|
+ ×<|C|

∣∣ ΓTh = d
}

,
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Γ being the route–OD pair incidence matrix, the Wardrop equilibrium condition is

[−c(ρ, h), g−1(ρ, d)] ∈ NHd
(h, d).

Assuming that the route cost is additive, we further have that with

F̂d :=
{

(v, d) ∈ <|L| ×<|C|
∣∣∣ ∃(h, d) ∈ Hd with v = Λh

}

(Λ being the route–link incidence matrix), (3) can be equivalently written as

[−t(ρ, v), g−1(ρ, d)] ∈ N bFd

(v, d),

where t(ρ, ·) : <
|L|
+ 7→ <

|L|
++ is the link cost vector.

4 Sensitivity analysis of traffic equilibria

4.1 Formulations

We first identify the sensitivity problem in our notation. Let

x =




h
v
d


 ; f(ρ, x) =




0|R|

t(ρ, v)
−ξ(ρ, d)


 ; C = <

|R|
+ ×<|L| ×<|C|.

Then, we can identify the sensitivity problem through the following identifications:

K =








h′

v′

d′


 ∈ <|R| ×<|L| ×<|C|

∣∣∣∣∣∣
ΓTh′ = d′; v′ = Λh′; h′ ∈ H ′



 ,

where

H ′ =





h′ ∈ <|R|

∣∣∣∣∣∣∣∣

h′
r free if h∗

r > 0
h′

r ≥ 0 if h∗
r = 0 and cr(ρ

∗, h∗) = π∗
k

h′
r = 0 if h∗

r = 0 and cr(ρ
∗, h∗) > π∗

k

[r ∈ Rk, k ∈ C]





,

and

r(ρ′, x′) =




0|R|

∇ρt(ρ
∗, v∗)ρ′ + ∇vt(ρ

∗, v∗)v′

−[∇ρξ(ρ
∗, d∗)ρ′ + ∇dξ(ρ

∗, d∗)d′]


 .

If we have strict monotonicity and separability of t and −ξ, then the resulting sensitivity VI
can be equivalently written as the following convex quadratic optimization problem to

minimize
(v′ ,d′)

φ′(v′, d′) := [∇ρt(ρ
∗, v∗)ρ′]Tv′ +

1

2

∑

l∈L

∂tl(ρ
∗, v∗l )

∂vl

(v′l)
2

− [∇ρξ(ρ
∗, d∗)ρ′]Td′ −

1

2

∑

k∈C

∂ξk(ρ
∗, d∗k)

∂dk
(d′k)2, (1a)

subject to ΓTh′ = d′, (1b)

v′ = Λh′, (1c)

h ∈ H ′. (1d)
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The sensitivity problem is closely related to the original model. Two main differences are
notable: the link cost and demand functions are affine, as a result of their linearization, and
the sign restrictions on h are replaced by individual restrictions on the route flow perturbations
h′

r that depend on whether the route in question was used at equilibrium or not, cf. the set
H ′. Although the appearance of H ′ depends on the choice of route flow solution h∗, it is an
interesting fact that the possible choices of v ′ in K does not; this is a general consequence of
aggregation. In summary, the sensitivity problem can be solved using software similar to those
for the original traffic equilibrium model, provided of course that route flow information can
be extracted.

The more general cases of non-invertible demand functions and/or non-separable travel cost
functions, as well as the link–node representation of flows, are derived similarly.

4.2 Results

Next we list sample sensitivity results. Suppose that t and −g are separable, differentiable,
and strictly monotone.

• The solution (v∗, d∗) to the TEP is unique.

• The link, route, and least OD travel cost sensitivities t′, c′, and π′ are unique.

• Suppose that
∂tl(ρ

∗,v∗
l
)

∂vl
> 0, l ∈ L, and

∂gk(ρ∗,π∗

k
)

∂πk
< 0, k ∈ C, holds. Then, the values

of the link flow and demand perturbation v ′ and d′ are unique; therefore, the value v′

(respectively, d′) is the directional derivative of the equilibrium link flow (respectively,
demand), at ρ∗, in the direction of ρ′.

• The link flow solution v∗ is differentiable at ρ∗ if and only if the following statement holds
for every r ∈ R: if h∗

r = 0 on the set of equilibria then h′
r = 0 on the set of sensitivity

solutions, for every choice of ρ′ ∈ <d.

Notice that if d is fixed, then the uniqueness of t′, c′, π′, and v′ follow without making reference
to any of the properties of g above. Notice further that the differentiability characterization is
strictly milder than the strict complementarity of h∗. The results for more general cases are
slightly weaker, due to the slightly stronger requirements for the TEP solution entities to be
unique.

The case of the logit-based TEP is interesting. Adding the term 1
θ

∑
r∈R hr log hr to the TEP,

we notice that h∗ > 0|R| will always hold. Therefore, the logit SUE solution (h∗, v∗) is always
differentiable. Further, if we let θ → ∞ then the limit of the sequence of SUE solution gradients
of v∗ is the gradient of v∗ in the UE solution if and only if the limit exists!

5 Limitations of a popular sensitivity analysis tool

The analysis in [ToF88] is performed on a a fixed demand problem. The first condition ensures
local uniqueness:
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(Condition 1—strong monotonicity) t(ρ, ·) is strongly monotone in a neighbourhood of ρ∗.

This condition is stronger than necessary, as we have seen.

The analysis is based on first selecting a particular equilibrium route flow solution. Among
the conditions stated, the route flow is supposed to be strictly complementary. The common
definition of strict complementarity of a route flow solution h∗ is that it is complementary
(that is, that 0 ≤ h∗

r ⊥ [cr(ρ
∗, h∗) − πpq(ρ

∗)] ≥ 0 holds for all r ∈ Rpq, (p, q) ∈ C), and

h∗
r + [cr(ρ

∗, h∗) − πpq(ρ
∗)] > 0, r ∈ Rpq, (p, q) ∈ C.

(An arbitrary route r ∈ Rpq is either used or it is more expensive than the routes used in
the OD pair.) Tobin and Friesz state a definition of traffic equilibrium in terms of total link
flows v only. The problem with this definition is that they work with aggregated potential
differences λ∗

j − λ∗
i , which may not exist:

(Condition 2—strict complementarity) For each link l = (i, j) ∈ L, v∗
l = 0 =⇒ tl(ρ

∗, v∗) >
λ∗

j − λ∗
i holds.

Whenever the total link flow vector v∗ is positive, this condition is satisfied. Clearly, it is not
compatible with the strict complementarity condition (5).

Next, we are asked to restrict the network G to G+ = (N ,L+), where l ∈ L+ if and only if
v∗l > 0, that is, to the network corresponding to the links having a positive flow given ρ∗.
Consequently, there are possibly some routes that will be removed as well. The + notation
to follow reflects this restriction. Under the assumptions stated sofar, the set H ∗

+(ρ∗) of
equilibrium route flows is a bounded polyhedron. The next condition states that an equilibrium
route flow vector h∗

+ is selected such that it is a “non-degenerate extreme point” of H ∗
+(ρ∗):

(Condition 3—linear independence) An equilibrium route flow h∗
+ is chosen such that it is an

extreme point of H∗
+(ρ∗) which has exactly as many routes with a positive flow as the rank of

the matrix [ΛT
+ | Γ+].

The rank of this matrix is not higher than the number of links with a positive flow at v∗ plus
|C|. An LP is stated for generating such a point, but the sensitivity values do not depend on
this choice as long as it is an extreme point of H ∗

+(ρ∗).

A final restriction is then made, such that we remove all the indices in the vector h∗
+ for which

the flow is zero. (We do not change the notation to reflect this restriction.) The sensitivity
problem is then finally set up as follows:

(
∇ρ h+

∇ρ π

)
=

(
∇h c+(ρ∗, h∗

+) −ΛT
+

Λ+ 0

)−1 (
−∇ρ c+(ρ∗, h∗

+)
∇ρ g(ρ∗)

)
. (2)

A case of differentiability where the formula (2) fails Consider the network shown in
Figure 1.

There is a single OD pair, (1, 3), with a fixed demand of 2 units of flow. The link cost functions
are given by

t1(v1, ρ) := v1 + ρ; t2(v2) := v2; t3(v3) := v3; t4(v4) := v4.
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Figure 1: Network for the first counter-example.

We have four routes: {1, 3}, {1, 4}, {2, 3}, and {2, 4}.

With ρ∗ = 0, the unperturbed traffic equilibrium solution is v∗ = (1, 1, 1, 1)T . The solution is
differentiable, since it is even strictly complementary. The derivative with respect to ρ at ρ∗

is (−1
2 , 0, 1

2 , 0)T, which is quite intuitive.

For the formula (2), we fulfill Conditions 1 and 2, because v∗ > 0|L| and G+ = G. We last try
to comply with the linear independence Condition 3, by choosing the right equilibrium route
flow solution. Note then that

[ΛT | Γ] =




1 0 1 0 1
1 0 0 1 1
0 1 1 0 1
0 1 0 1 1


 ,

which has rank 3. So, we should find a route flow solution, h∗, in which exactly 3 routes have
a positive flow. This is however impossible; the only alternatives are 2 or 4. To see why, let’s
suppose that the flow on the first route, {1, 3}, is α ∈ [0, 1]. Then, the flows on the routes
{1, 4} and {2, 3} must both be 1−α, in order to comply with the total flow on the links. This
implies that the flow on route {2, 4} is α. This shows that for any value of α ∈ [0, 1], the
number of routes having a non-zero flow is either 2 or 4. We can therefore not comply with
Condition 3, and the formula fails, even though the gradient exists. We remark that there are
differentiable points that are even non-strictly complementary.
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