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1  Introduction 

This paper discuses one of the most critical aspects of the dynamic simulation of road networks 
based on a microscopic approach, namely how it performs a heuristic dynamic assignment, the 
implied route choice models, and whether under certain criteria it can achieve a stochastic user 
equilibrium. From an analytical point of view dynamic traffic assignment has been usually related 
to the concept of the dynamic user equilibrium problems. Some of the most successful approaches 
are inspired on the seminal paper by Friesz et al. 1993, that proposes a dynamic network user 
equilibrium model which equilibrates the disutilities of the temporal choices. To achieve such 
equilibrium they take the perspective “that the essential choices available to users of a 
transportation network –route choice and departure time – occur in time-varying environments 
and are made rationally”, and they conclude with the assumption that these rational choices can 
only be made if the disutilities of the alternatives are equilibrated. Two main approaches have 
been used to model these route choices. One based on a generalization of Wardrop’s fist principle 
of static traffic assignment, in which users try to optimize their route based on the current 
information, this approach describes the evolution of flows when users make route choice 
decisions based on experienced travel times, and it is usually known as a preventive or en-route 
assignment, it does not achieve a day-to-day equilibrium pattern, therefore it is considered a 
dynamic traffic assignment principle and not a true equilibrium. In the above referenced paper 
Friesz et al. propose an alternative generalization of Wardrop’s principle stated in the following 
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terms: If, at each instant in time, for each OD pair, the flow unit costs on utilized paths are 
identical and equal ti the minimum instantaneous unit path cost, the corresponding flow pattern is 
said to be in dynamic traffic equilibrium. This approach, also known as reactive assignment, can 
be interpreted in terms that could correspond to users having access to a real-time driver 
information traffic forecasting system or, alternatively, as an approximation to a process  by 
which traveler combine the experienced travel times with conjectures to forecast the temporal 
variations in flows and travel costs. Friesz et al. 1993 show that under these equilibrium 
conditions the problem can be formulated as a variational inequality problem. According to 
(Florian et al., 2001), a dynamic traffic assignment model consists of two main components: 

1. A method to determining the path dependent flow rates on the paths on the network, and 
2. A Dynamic Network Loading method, which determines how these path flows give raise 

to time-dependent arc volumes, arc travel times and path travel times 
 
In the Dynamic Network Loading, also known as Dynamic Network Flow Propagation, (Cascetta, 
2001), “models simulate how the time-varying continuous path flows propagate through the 
network inducing time-varying in-flows, out-flows and link occupancies”.  A wide variety of 
approaches, from analytical to simulation based, have been proposed. In all them path flows are 
determined by an approximate solution to the mathematical model for the dynamic equilibrium 
conditions. The differences between the various referenced approaches lay in the discretization 
scheme used to solve the Friesz variational inequality problem, and the algorithmic approach to 
solve the discretized  problem (i.e. projection algorithms, successive averages, etc.) and the 
dynamic network loading mechanism, analytical (Wu et al., 1998; Xu et al., 1999), or simulation 
based (Florian et al. 2001). 

2  Heuristic Dynamic Traffic Assignment Based on Microscopic 

Simulation 

The assessment by simulation of ITS applications by microscopic simulation requires a route 
based microscopic simulation paradigm. In this approach, vehicles are input into the network 
according to the demand data defined as an O/D matrix (preferably time dependent) and they 
drive along the network following specific paths in order to reach their destination. In the route 
based simulation new routes are to be calculated periodically during the simulation, and a Route 
Choice model is needed, when alternative routes are available to determine how the trips are 
assigned to these routes. The key question that this approach raises is whether this simulation can 
be interpreted in term of a stochastic heuristic dynamic traffic assignment or not. We propose to 
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investigate the answer to this question in the case of a microscopic simulation using AIMSUN 
(2003), a route based microscopic simulator (Barceló et al. 1998). This paper is more elaborated 
version of a previous research reported in Barceló and Casas 2002 and 2004, and Barceló 2004. 
This process can be interpreted in terms of an heuristic approach to dynamic traffic assignment 
similar to the one proposed by Florian et al. 2001,  consisting on: 

1. A method to determining the path dependent flow rates on the paths on the network, 
based on a Route Choice function, and 

2. A Dynamic Network Loading method, which determines how these path flows give raise 
to time-dependent arc volumes, arc travel times and path travel times, heuristically 
implemented by microscopic simulation. 

The implemented simulation process, Barceló and Casas 2004, based on time dependent routes 
consists of the following procedure: 
Procedure heuristic dynamic assignment 

Step 0:  Calculate initial shortest path(s) for each O/D pair using the defined initial costs 
Step 1: Simulate for a time interval ∆t assigning to the available path Ki the fraction of the trips 

between each O/D pair i for that time interval according to the probabilities Pk , k∈ K 
estimated by the selected route choice model. 

Step 2: Update the link cost functions and recalculate shortest paths, with the updated link costs.  
Step 3:  If there are guided vehicles, or VMS proposing a rerouting, provide the information 

calculated in 2 to the drivers that are dynamically allowed to reroute on trip. 
Step 4: Case a (Preventive dynamic assignment) 
    If all the demand has been assigned then stop. Otherwise go to step 1. 
 Case b (Reactive dynamic assignment) 

  If all the demand has been assigned and the convergence criteria holds then stop. 
Otherwise: Go to step 1 if all the demand has not been assigned yet, or go to step 0 and 
start a new major iteration 

Depending on how the link cost functions are defined,  and whether the procedure is applied as 
one pass method completed when all the demand has been loaded, or it is applied as part of an 
iterative scheme repeated until certain convergence criterion is satisfied, it corresponds either to a 
“preventive” or en route dynamic traffic assignment, or to a “reactive” or heuristic equilibrium 
assignment. In the first case route choice decisions are made for drivers entering the network at a 
time interval based on the experienced travel times, i.e. the travel times of the previous time 
interval, and the link cost function is defined in terms of the average link travel times in the 
previous interval. Alternatively a heuristic approach to equilibrium can be based on repeating the 
simulation scheme a number of times and defining a link cost function including predictive terms, 
as proposed by Friesz et al. 1993, (see also Xu et al. 1999).  
 
Route choice based on a day-to-day learning mechanism 
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In this case the simulation is replicated N times and link costs for each time interval and every 
replication are stored and thus at iteration l of replication j the costs for the remaining l+1, l+2,…, 
L (where L=T/∆t, being T the simulation horizon and ∆t  the user defined time interval to update 
paths and path flows) time intervals for the previous j-1 replications can be used in an anticipatory 
day-to-day learning mechanism to estimate the expected link cost at the current iteration. Let 

 be the current cost of link a at iteration l of replication j, then the average link costs for the 

future L-l time intervals, based on the experienced link costs for the previous j-1 replications is: 
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The resulting cost of path k for the i-th OD pair is  
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where, as usually δak is 1 if link a belongs to path k and 0 otherwise. The path costs ( )1~ +l
k hS  are 

the arguments of the route choice function (logit, C-logit, proportional, user defined, etc.) used at 

iteration l+1 to split the demand g among the available paths for OD pair i. In the 

computational experiments discussed in this paper a simplified version consisting of a link cost 
function defined as: 
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Where is the cost of using link i  at time t at iteration k+1, and c and 1+k
itc k

it
k

itc~ correspond 

respectively to the expected and experienced link costs at this time interval from previous 
iterations.  
 
Route Choice Models 
 
In the proposed network loading mechanism based on microscopic simulation vehicles follow 
paths from their origins in the network to their destinations. So the first step in the simulation 
process  is to assign a path to each vehicle when it enters the network, from its origin to its 
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destination. This assignment, made by a path selection process based on a discrete route choice 
model, will determine the path flow rates. Given a finite set of alternative paths, the path selection 
calculates the probability of each available path and then the driver’s decision is modeled by 
randomly selecting an alternative path according to the probabilities assigned to each alternative. 
Route choice functions represent implicitly a model of user behavior, that emulates the most 
likely criteria employed by drivers to decide between alternative routes in terms of the user’s 
perceived utility (or, properly speaking, a disutility, or cost in the case of trip decisions) defined in 
terms of perceived travel times, route lengths, expected traffic conditions along the route, etc. The 
simulation experiments reported in this paper have been implemented in AIMSUN selecting the 
Logit, C-Logit and Proportional route choice functions from the default route choice functions 
available in the simulator. The  Multinomial Logit route choice model defines the choice 
probability Pk of alternative path k, k∈ Ki, as a function of the difference between the measured 
utilities of that path and all other alternative paths: 
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where Vi is the perceived utility for alternative path i (i.e. the opposite of the path cost, or path 
travel time), and θ is a scale factor that plays a two-fold role, making the decision based on 
differences between utilities independent of measurement units, and influencing the standard 
error of the distribution of expected utilities, determining in that way a trend towards utilizing 
many alternative routes or concentrate in very few routes, becoming in that way the critical 
parameter to calibrate how the logit route choice model leads to a meaningful selection of routes 
or not. A drawback reported in using the Logit function is the observed tendency towards route 
oscillations in the routes used, with the corresponding instability creating a kind of flip-flop 
process. According to our experience there are two main reasons for this behavior. The properties 
of the Logit function, and the inability of the Logit function to distinguish between two 
alternative routes when there is a high degree of overlapping.  To avoid this drawback the 
C-Logit model, (Cascetta et al., 1996; Ben-Akiva and Bierlaire, 1999), has been implemented. In 
this model, the choice probability Pk, of each alternative path k belonging to the set Ki of 
available paths connecting the i-th OD pair, is defined by: 
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where Vi is the perceived utility for alternative path i, i.e. the opposite of the path cost, and θ is the 
scale factor, as in the case of the Logit model. The term CFk, denoted as ‘commonality factor’ of 
path k, is directly proportional to the degree of overlapping of path k with other alternative paths. 
Thus, highly overlapped paths have a larger CF factor and therefore smaller utility with respect to 
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similar paths. CFk can be calculated in different ways depending on how the overlapping is 
defined (i.e. length of common arcs to alternative paths). Other option is the estimation of the 
choice probability Pk of path k , k∈ Ki, in terms of a generalization of Kirchoff’s laws given by the 
function 
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where CPl is the cost of path l, α is in this case the parameter whose value has to be calibrated.  

3  Computational Results 

A set of simulation experiments has been designed and conducted to explore empirically whether 
the described assignment process, depending on how it is implemented, can be associated to a 
heuristic realization of a preventive or a reactive dynamic assignment, assuming that a proper 
selection of a route choice model with the right values for the θ, β, γ or α parameters, depending 
on the model, should lead to the realization of some equilibrium. A way of measuring the progress 
towards the equilibrium in an assignment, and therefore qualify the solution,  is the relative gap 
function, Rgap(t) , (Florian et al. 2001, Janson 1991), that estimates at time t the relative 
difference between the total travel time actually experienced and the total travel time that would 
have been experienced if all vehicles had the travel time equal to the current shortest path: 
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Where ui(t) are the travel times on the shortest paths for the i-th OD pair at time interval t, sk(t) is 
the travel time on path k connecting the i-th OD pair at time interval t, hk(t) is the flow on path k at 
time t, gi(t) is the demand for the i-th OD pair at time interval t, Ki, is the set of paths for the i-th 
OD pair, and I is the set of all OD pairs.  
 
A set of computational experiments with models of the networks of: The borough of Amara in the 
City of san Sebastián in Spain. A model with 365 road sections, 100 nodes and 225 OD pairs; the 
model of Brunnsviken network in Stockholm. This model has 493 road sections, 260 nodes and 
576 OD pairs; Preston City Centre in UK, the model has 1375 road sections, 188 nodes and 1156 
OD pairs; the 1,500 Km motorway and highway network of the State of Hessen in Germany, a 
model with 18,800 road sections, 3,250 nodes, and 60,000 OD pairs  
 
The figures 1, and 2 depict the time evolution of the Rgap(t) function for various Route Choice 
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functions, for the preventive, or en-route version of the assignment procedure, using a K-shortest 
path algorithm, for the test models of Amara and Brunssviken. In these figures Logit n, 
corresponds to the above defined Logit function with value n for the shape parameter θ, 
proportional corresponds to a path probability inversely proportional to the path cost. The 
expected role of the θ parameter in terms of the Rgaps function becomes evident in the 
combination of the logit function with the assignment procedure. Improper choices of the 
parameter values tend to produce a bang-bang effect consequence of the tendency to move most 
of the flow to the current shortest path, as the oscillations of the Rgap function show, while a more 
appropriate θ value (θ = 30 in Amara, or θ = 900 in Brunnsviken) not only smooth out 
significantly the Rgap oscillations but also shows  that a path selection with acceptable path costs 
differences (a 10% in Amara and around a 1% in Brunnsviken.  
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Figure 1. Time evolution of the Rgap fuction for various Route Choice functions for Amara 
model (Preventive case)  
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Figure 2. Rgap function for Brunnsviken (Preventive case) 
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The figures 3 and 4, depict the time evolution of the Rgap function for the same logit route choice 
function, for the reactive version of he assignment procedure using the costs as defined in (1), at 
iteration k=20, and λ=0.25, 0.5 and 0.75 respectively, for  θ values of 30 in Amara, and 900 in 
Brunnsviken. Rgap values tend almost to zero, as expected in equilibrium terms, and the 
variations for the various values of  λ show that λ=0.75 is the best. 
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Figure 3. Rgap for Amara (Reactive case) 
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Figure 4. Rgap for Brunnsviken (Reactive case) 
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4  Conclusions 

Assuming that the “dynamic equilibrium” exists the empirical results show that a proper time 
varying k-shostest paths calculation, with a suitable definition of link costs, and adequate 
stochastic route choice functions, using a microscopic network loading mechanism, achieves a 
network state that can replicate acceptably the observed flows over the simulation horizon, and 
led to a reasonable set of used paths between OD pairs as the oscillations within a narrow band of 
the empirical Rgap function  indicates, achieving a heuristic dynamic equilibrium. 

References 

AIMSUN and TEDI Version 4.2 User’s Manual, TSS-Transport Simulation Systems, 2003. 
Barceló, J., J.L. Ferrer, D. García, M. Florian and E. Le Saux (1998), Parallelization of 
Microscopic Traffic simulation for ATT Systems Analysis. In: P. Marcotte and S. Nguyen (Eds.), 
Equilibrium and Advanced Transportation Modeling, Kluwer Academic Publishers. 
 
Barceló, J. and J. Casas (2002), Heuristic Dynamic Assignment based on Microscopic Traffic 
Simulation. Proceedings of the 9th Meeting of the Euro Working Group on Transportation, Bari, 
Italy. 
 
Barceló, J. and J. Casas, (2004) Methodological Notes on the Calibration and Validation of 
Microscopic Traffic Simulation Models, Paper #4975, 83rd TRB Meeting, Washington. 
 
Barceló, J.,  (2004) Dynamic Network Simulation with AIMSUN, Proceedings of the 
International Symposium on Transport Simulation, Yokohama, August 2002, Edited by Kluwer, 
to appear Summer 2004. 
 
Ben-Akiva, M. and M. Bierlaire (1999),Discrete Choice Methods and Their Applications to 
Short  Term Travel Decisions, in: Transportation Science Handbook, Kluwer. 
 
Cascetta, E., A. Nuzzolo, F. Russo and A. Vitetta (1996), A Modified Logit Route Choice Model 
Overcoming Path Overlapping Problems, in: Proceedings of the 13th International Symposium on 
Transportation and Traffic Flow Theory, Pergamon Press 
 
Cascetta, E., 2001, Transportation Systems Engineering: Theory and Methods, Kluwer 

Le Gosier, Guadeloupe, June 13–18, 2004 



10                           TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis 

Le Gosier, Guadeloupe, June 13–18, 2004 

Academic Publishers. 
 
Florian, M., M. Mahut and N. Tremblay (2001), A Hybrid Optimization-Mesoscopic Simulation 
Dynamic Traffic Assignment Model, Proceedings of the 2001 IEEE Intelligent Transport   
Systems Conference, Oakland, pp. 120-123. 
Friesz, T., Bernstein, D., Smith, T., Tobin, R., Wie, B. A variational inequality formulation of the 
dynamic network user equilibrium problem. Operations Research, 41:179-191, (1993). 
 
Janson, B. N., 1991, Dynamic Assignment for Urban Road Networks, Transpn. Res. B, Vol. 25, 
Nos. 2/3, pp. 143-161. 
 
Wu J.H., Y. Chen and M. Florian (1998), The Continuous Dynamic Network Loading Problem: A 
Mathematical Formulation and Solution Method, Trans. Res.-B, Vol. 32, No. 3, pp.173-187. 
 
Xu Y.W., J.H. Wu, M. Florian, P. Marcotte and D.L. Zhu (1999), Advances in the Continuous 
Dynamic Network Problem, Transportation Science, Vol. 33, No. 4, pp. 341-353. 


