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1 Motivation and related literature

In the strategic planning process of a public transportation company one important step is to
find a suitable line concept, i.e. to define the routes of the bus or railway lines.

Given a public transportation network PTN = (S,E) with its set of stations S and its set of
direct connections E, a line is defined as a path in this network. The line concept is the set of
lines offered by the public transportation company.

The line planning problem has been well studied in the literature. For an early contribution
we refer to Dienst (1978). The more recent models can be classified roughly into two types of
models. In a cost-oriented approach the goal is to find a line concept serving all customers and
minimizing the costs for the public transportation company. The basic cost model has been
suggested in Claessens et al.(1998) and Goosens et al.(2001); recently Goosens et al.(2002)
takes also into account different types of vehicles simultaneously.

A new approach is to take into account that the behavior of the customers depends on the
design of the lines. A first model including such demand changes was treated with simulated
annealing in cooperation with Deutsche Bahn, see Klingele (2000) and Schmidt (2001).

On the other hand, in the direct travelers approach by Bussieck et al.(1996) and Bussieck (1998)
the goal is to maximize the number of direct customers (i.e. customers that need not change
the line to reach their destination), given upper and lower bounds on the allowed frequencies
on each edge.

Although the latter model is a customer-oriented approach it maximizes the amount of one
group of customers but without considering the remaining ones which might have very many
transfers on their trips. It also does not take into account the travel times for the customers:
Sometimes it is preferable to have a transfer but reach the destination earlier instead of sitting
in the same line for the whole trip but having a large detour. In this paper we develop a new
model taking into account these points. Our model allows to consider the sum over all travel
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times over all customers including penalties for the transfers needed.

The remainder of the paper is organized as follows. In Section 2 we introduce our model
and point out variations of the objective. Then we describe our solution approach which is
based on a Dantzig-Wolfe decomposition in Section 3 and indicate the real-world application
on which we are applying our model.

2 The model

A public transportation network is a finite, undirected graph PTN = (S,E) with a node set S

representing stops or stations, and an edge set E, where each edge {u, v} indicates that there
exists a direct ride from station u to station v (i.e. a ride that does not pass any other station
in between).

We assume the PTN as already given and fixed. We further assume that a line pool L is given,
consisting of a set of paths in the PTN. Each line l ∈ L is specified by a sequence of stations.
Given a station s ∈ S we furthermore define

L(s) = {l ∈ L : s ∈ l}

as the set of all lines passing through s.

The line planning problem is to choose a “good” subset of lines L ∈ L, which is then called
the line concept.
Let R ⊆ S × S denote the set of all origin-destination (OD) pairs (s, t), where wst is the
number of customers wishing to travel from station s to station t.

For line planning we use the PTN to construct a directed graph, the so-called change&go-

network GCG = (V, E) as follows: We extend the set S of stations to a set V of nodes with
nodes representing either station-line-pairs (change&go nodes: VCG) or the start and end
points of the customers (origin-destination nodes: VOD), i.e. V := VCG ∪ VOD with

• VCG := {(s, l) ∈ S ×L : l ∈ L(s)} (set of all station-line-pairs)

• VOD := {(s, 0) : (s, t) ∈ Ror(t, s) ∈ R} (origin-destination-nodes)

The new set of edges E consists of edges between nodes of the same stations (representing
getting in or out of a vehicle or changing a line) and edges between nodes of the same line
(representing driving on a line):

E := Echange ∪ EOD ∪ Ego with

• Echange := {((s, l1), (s, l2)) ∈ VCG × VCG} (changing edges)

• El := {((s, l), (s′, l) ∈ VCG × VCG : (s, s′) ∈ E} (driving edges of line l ∈ L)

• Ego :=
⋃

l∈L El (driving edges)
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• EOD := {((s, 0), (s, l)) ∈ VOD × VCGand((t, l), (t.0)) ∈ VCG × VOD : (s, t) ∈ R} (origin-
destination-edges)

We define weights on all edges e ∈ E of the change&go-network representing the inconvenience
customers have by using the edge. Then, for a single OD-pair we can determine the lines the
customer is likely to use by calculating a shortest path in the change&go network. Therefore
the choice of the edge costs ce is very important.
Some examples:

1. Customers only count transfers:

ce =

{

1 : e ∈ Echange

0 : else

Note that in this case, it is possible to shrink the change&go-network to a network with
|L| + |S| nodes and |Echange| + |EOD| edges.

2. Real travel time:

ce =











0 : e ∈ EOD

travel time in minutes : e ∈ Ego

time needed for changing platform : e ∈ Echange

It often is reasonable to make transfers more inconvenient by increasing ce for all e ∈ Echange

in the real travel time model.
Other combinations and variations are possible.

Since we assume that customers prefer shortest paths according to the weights ce we need
an implicit calculation of shortest paths within our model. This is obtained by solving the
following network flow problem for each origin-destination pair (s, t) ∈ R.

θxst = bst,

where θ ∈ ZZ|V|×|E| is the node-arc-incidence matrix of the GCG, bst ∈ ZZ|V| is defined by

bi
st =











1 : i = (s, 0)
−1 : i = (t, 0)

0 : else

and a variable xe
st = 1 if and only if edge e is used on a shortest path from node (s, 0) to (t, 0)

in GCG. To specify the lines in the line concept we introduce for each line l ∈ L a variable
yl ∈ IB = {0, 1} which is set to 1 if and only if line l is chosen to be in the line concept. Our
model, Line Planning with Minimal Travel Times (LPMT) can now be presented.

(LPMT)

min
∑

(s,t)∈R

∑

e∈E

wst ce xe
st
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s.t.
∑

(s,t)∈R

∑

e∈El
xe

st ≤ ylMl ∀ l ∈ L (1)

θxst = bst ∀ (s, t) ∈ R (2)
∑

l∈L Clyl ≤ B (3)
xe

st, yl ∈ IB ∀ (s, t) ∈ R, e ∈ E , l ∈ L (4)

Constraint (1) makes sure that a line must be included in the line concept if the line is used
by some OD-pair, where Ml is a sufficiently large number, at least bigger than the number of
edges of the line l. Constraint (2) forces that customers use shortest paths according to the
weights ce.

Note that so far the best line concept from a customer-oriented point of view would be to
introduce all lines of the line pool. This is certainly no option for a public transportation
company, since running a line is costly. Let Cl be an estimation of the costs which occur if
line l is chosen and let B be the budget the public transportation company is willing to spend.
Then the budget constraint (3) takes the economic aspects into account.

The objective function we use is customer-oriented. We allow to specify some edge cost ce

for each edge in the change&go- network and for each OD-pair (s, t) ∈ R we sum up the
costs

∑

e∈E wst ce xe
st of a shortest path from s to t. Adding over all (s, t) ∈ R means that

we minimize the average costs of the customers. There are various possibilities to choose ce.
Some of them have been mentioned above.

3 Dantzig-Wolfe Decomposition

The line planning problem introduced in Section 2 is NP-hard and moreover in real-world
instances, gets huge (see Section 4). But fortunately (LPMT) has an easy block structure
with only a few coupling constraints and all blocks (except the single budget constraint)
totally unimodular. This structure can be utilized to set up a Dantzig-Wolfe decomposition.

We now present the formulation of the Master LP and of the corresponding subproblems. For
further details on the algorithm the reader is referred to Dantzig and Wolfe(1960).

The block structure of the model is shown in the following reformulation.

min
∑

(s,t)∈R

∑

e∈E wstcex
e
st

∑

(s,t)∈R

∑

e∈l x
e
st ≤ ylM coupling constraints

Xs1,t1

Xs2,t2

. . .

Xsr,tr

Y

with |R| + 1 blocks:
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Xst := {xst ∈ ZZ|E| : θxst = bst, 0 ≤ xe
st ≤ 1, ∀ e ∈ E}

Y := {y ∈ ZZ|L| : CTy ≤ B, 0 ≤ yl ≤ 1, ∀ l ∈ L}
and |L| coupling constraints:

∑

(s,t)∈R

AX xst − AY y ≤ 0

with coefficient matrix (AX | . . . |AX |AY ) of the coupling constraints where AX is an |L| × |E|
matrix given by elements ale = 1, if e ∈ El, zero otherwise. It is equal for each OD-pair.

AY is an |L| × |L| diagonal matrix containing Ml as its lth diagonal element.

With the weight-cost-constants ce
st := wstce and the |L|-vector v as slack variable we get the

following master LP:

(Master)

z = min
∑

(s,t)∈R

∑

i

(cst x
(i)
st )αi

st

s.t.
∑

(s,t)∈R

∑

i(AX x
(i)
st )αi

st −
∑

i(AY y(i))βi + Iv = 0 (1)
∑

i α
i
st = 1 ∀ (s, t) ∈ R (2)

∑

i β
i = 1 (3)

αi
st, β

i ≤ 1 ∀ (s, t) ∈ R (4)
vl, α

i
st, β

i ≥ 0

where the x
(i)
st , y(i) are the extreme points of Xst and Y .

The subproblems of the Xst-blocks are

z = min(cst − πAX)xst − µst

s.t. xst ∈ Xst

and the subproblem of the Y -block is

z = min(−πAY )y − µ00

s.t. yl ∈ Y

where {πi}i∈L are the dual variables of the coupling constraints, {µst}(s,t)∈R are the dual
variables of the alpha convexity constraints and µ00 is the dual variable of the beta convexity
constraint.

4 Real-world application

Our approach is currently tested on instances of the long distance trains of the German railway
network. The line pool we use was generated by German railway (DB). The given PTN consists
of a line pool of 423 lines, 35322 OD-pairs, 233 stations and 319 tracks.
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This leads to a change&go-network with 6705 nodes, 343271 edges, 2.42 · 1010 variables and
236834434 constraints. We implemented our model using Xpress MP 2003. Numerical results
will be presented.

In the line planning models known in the literature lines are mainly computed together with
frequencies. The inclusion of frequencies into the (LPMT) is current research.
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