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1 Introduction

Given a vehicle fleet and a stochastic process characterizing the load arrivals in a transportation
network, the primary objective of the fleet management models is to make the vehicle repo-
sitioning and vehicle-to-load assignment decisions so that some performance measure (profit,
cost, deadhead miles, number of served loads, etc.) is optimized. However, besides making
these vehicle allocation and assignment decisions, a very important question that is commonly
overlooked by many fleet management models is how the performance measures would change
in response to a change in certain model parameters. For example, freight carriers are inter-
ested in how much their profits would increase if they introduce an additional vehicle into the
system or if they serve an additional load on a certain traffic lane. Railroad companies want to
estimate the minimum number of railcars that is necessary to cover random shipper demands.
Airlift Mobility Command is interested in the impact of limited airbase capacities on the de-
layed shipments. Answering such questions requires sensitivity analysis of the underlying fleet
management model responsible for making the vehicle allocation decisions.

In this paper, we develop efficient sensitivity analysis methods for a stochastic fleet manage-
ment model previously developed by Godfrey & Powell (2002). This model formulates the
problem as a dynamic program, decomposing it into time-staged subproblems, and replaces
the value functions with specially-structured approximations that are obtained through an
iterative improvement scheme. Here, we develop methods to compute how much the profits
would increase if an additional vehicle or an additional load is introduced into the system, and
show how to apply these methods for fleet sizing.
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2 Problem Formulation

We have a fleet of vehicles to serve the loads of different types occurring over time. At every
time period, a certain number of loads enter the system, and we have to decide which loads
to cover and to which locations we should reposition the empty vehicles. We are interested in
maximizing the total profit over a finite horizon. For brevity, we assume that all travel times
are single time period and the fleet is homogenous. We define the following:

T = Set of time periods in the planning horizon, T = {1, . . . , T}.

I = Set of locations in the transportation network.

L = Set of movement modes using which a vehicle can move from one location
to another, L = {0, . . . , L}. Movement mode 0 always corresponds to empty
repositioning, other modes correspond to carrying different types of loads.

xijlt = Number of vehicles dispatched from location i to j at time period t using
movement mode l.

cijlt = Cost (negative profit) of dispatching one vehicle from location i to j at time
period t using movement mode l.

Dijlt = Random variable representing the number of loads that need to be carried
from location i to j at time period t and correspond to movement mode l.

rit = Number of vehicles at location i at time period t.

In practice, the movement modes in L \ {0} may correspond to different types of loads or
different shippers, and usually cijlt < 0 when l ∈ L \ {0}. Since the movement mode 0
corresponds to empty repositioning, we assume cij0t ≥ 0 and Dij0t = ∞ for all i, j ∈ I, t ∈ T .
We use xt, ct, Dt, D and rt to denote the vectors {xijlt : i, j ∈ I, l ∈ L}, {cijlt : i, j ∈ I, l ∈ L},
{Dijlt : i, j ∈ I, l ∈ L}, {Dt : t ∈ T } and {rit : i ∈ I} respectively. We note that rt completely
defines the state of the vehicles necessary to make the decisions at time period t. Then, the
set of feasible decision vectors at time period t is given by

X (rt, Dt) = { xt ∈ Z
|I|2|L|
+ :

∑

j∈I

∑

l∈L

xijlt = rit for all i ∈ I (1)

xijlt ≤ Dijlt for all i, j ∈ I, l ∈ L }. (2)

Given xt and rt, the state vector at time period t + 1 is defined by

rj,t+1 =
∑

i∈I

∑

l∈L

xijlt for all j ∈ I. (3)

We also define

Y(rt, Dt) ={ (xt, rt+1) : xt ∈ X (rt, Dt)

rj,t+1 =
∑

i∈I

∑

l∈L

xijlt for all j ∈ I }.

We are interested in finding a Markovian deterministic policy that minimizes the expected
cost over the planning horizon. Such a policy π can be characterized by a sequence of decision
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functions {Xπ
t (·, ·) : t ∈ T }, such that each Xπ

t (·, ·) maps the state vector rt and the realization
of the loads Dt for time period t to a decision vector xt. One can also define the state transition
functions {Rπ

t+1(·, ·) : t ∈ T } of policy π, such that each Rπ
t+1(·, ·) maps the state vector and

the realization of the loads at time period t to a state vector for the next time period. (Given
Xπ

t (·, ·), Rπ
t+1(·, ·) can easily be defined by noting (3).) Then, for a given state vector rt and

realization of future demands {Dt, . . . , DT } at time period t, the cumulative cost function for
policy π can be written recursively as

F π
t (rt, Dt, Dt+1, . . . , DT ) = ct · X

π
t (rt, Dt) + F π

t+1

(

Rπ
t+1 (rt, Dt) , Dt+1, Dt+2, . . . , DT

)

, (4)

with FT+1 (·, ·) = 0. The optimal policy π∗ satisfies π∗ = arg minπ E { F π
1 (r1, D1, . . . , DT ) } ,

and can be found by computing the value functions through the functional equation

V π∗

t (rt) = E

{

min
(xt,rt+1)∈Y(rt,Dt)

ct · xt + V π∗

t+1(rt+1) | rt

}

. (5)

In this case, the decision and transition function for the optimal policy become
(

Xπ∗

t (rt, Dt), Rπ∗

t+1(rt, Dt)
)

= arg min
(xt,rt+1)∈Y(rt,Dt)

ct · xt + V π∗

t+1(rt+1). (6)

(6) also shows that one can obtain different (probably suboptimal) policies by replacing V π∗

t+1(·)
with different functions. In this paper, we follow a class of policies obtained by replacing
{V π∗

t (·) : t ∈ T } with separable functions {V π
t (·) : t ∈ T } of the form V π

t (rt) =
∑

i∈I V π
it (rit),

where each of V π
it (·) is a one-dimensional, piecewise-linear, convex function. Godfrey & Powell

(2002) give an iterative, sampling-based algorithm that can be used to obtain a “good” set
of approximations, and their experimental work indicates that these approximations yield
very high quality solutions. In this paper, we are concerned with estimating the change
in F π

1 (r1, D1, . . . , DT ) induced by changing an element of the state vector r1 or the load
availability vector D1.

3 Decision and Transfer Function for Our Class of Policies

Letting π be a policy characterized by the set of separable, piecewise-linear, convex value
function approximations {V π

t (·) : t ∈ T }, we define the decision and state transition function
for this policy as

(

Xπ
t (rt, Dt), Rπ

t+1(rt, Dt)
)

= arg min
(xt,rt+1)∈Y(rt,Dt)

ct · xt + V π
t+1(rt+1). (7)

It can be shown that problem (7) is a min-cost network flow problem when the value function
approximations are separable, piecewise-linear, convex functions with points of nondifferentia-
bility being a subset of positive integers.

4 Policy Gradients with respect to Vehicle Availabilities

For a realization of loads D = {Dt : t ∈ T }, we let
{

xπD
t : t ∈ T

}

and
{

rπD
t : t ∈ T

}

be the
sequence of decisions and states visited by the system under policy π and load realization D.
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That is,
{

xπD
t : t ∈ T

}

and
{

rπD
t : t ∈ T

}

are recursively computed by

xπD
t = Xπ

t

(

rπD
t , Dt

)

, rπD
t+1 = Rπ

t+1

(

rπD
t , Dt

)

, with rπD
1 = r1. (8)

In this section, we develop an algorithm that computes how much the total cost under policy π

would change if an additional vehicle is introduced into the system. That is, we are interested
in computing

Φπ
t (ei, D) = F π

t

(

rπD
t + ei, Dt, . . . , DT

)

− F π
t

(

rπD
t , Dt, . . . , DT

)

, (9)

where ei is the |I| dimensional unit vector with a 1 in the element corresponding to i ∈ I.

We note that Φπ
t (ei, D) can be computed by two simulations of policy π under load realization

D, one of which starts with the state vector rπD
t and the other with rπD

t + ei. However, in
general, doing this for all i ∈ I and for multiple load realizations can get very time consuming.
Our objective is to be able to compute Φπ

t (ei, D) for all i ∈ I from a single simulation. Using
(4), (9) can be written as

Φπ
t (ei, D) = ct ·

{

Xπ
t

(

rπD
t + ei, Dt

)

− xπD
t

}

+ F π
t+1

(

Rπ
t+1

(

rπD
t + ei, Dt

)

, Dt+1, . . . , DT

)

− F π
t+1

(

rπD
t+1, Dt+1, . . . , DT

)

.

Therefore, computing
{

Xπ
t

(

rπD
t + ei, Dt

)

− xπD
t

}

and
{

Rπ
t+1

(

rπD
t + ei, Dt

)

− rπD
t+1

}

is key to
computing Φπ

t (ei, D) and these quantities are related to how the solution of the min-cost
network flow problem (7) changes when the right side of constraints (1) is increased from rπD

t

to rπD
t + ei. For this purpose, we use a well-known relationship between the perturbations of

min-cost network flow problems and min-cost flow augmenting trees (see, for example, Powell
(1989)).

Proposition 1 Xπ
t

(

rπD
t + ei, Dt

)

= xπD
t +ξπ

t (ei, D), Rπ
t+1

(

rπD
t + ei, Dt

)

= rπD
t+1+δπ

t+1(ei, D),
where ξπ

t (ei, D) and δπ
t+1(ei, D) can be computed for all i ∈ I by one min-cost flow augmenting

tree computation. Furthermore, exactly one element of the vector δπ
t+1(ei, D) is equal to +1

and all the other elements of this vector are equal to 0.

Then, the following result gives an efficient algorithm to compute Φπ
t (ei, D) for all i ∈ I and

t ∈ T .

Proposition 2 Φπ
t (ei, D) can be computed for all i ∈ I and t ∈ T by the backward recursion

Φπ
t (ei, D) = ct · ξ

π
t (ei, D) + Φπ

t+1

(

δπ
t+1(ei, D), D

)

.

We also remark that using the properties of min-cost flow decreasing trees, a similar procedure
can be developed to compute Φπ

t (−ei, D) = F π
t

(

rπD
t − ei, Dt, . . . , DT

)

−F π
t

(

rπD
t , Dt, . . . , DT

)

.

5 Policy Gradients with respect to Load Availabilities

In this section, we construct an algorithm that is useful to assess how much the total cost under
policy π would change if an additional load is introduced into the system. More precisely,
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letting eijl be the |I|2|L| dimensional unit vector with a 1 in the element corresponding to
i, j ∈ I, l ∈ L, we want to compute

Ψπ
t (eijl, D) = F π

t

(

rπD
t , Dt + eijl, . . . , DT

)

− F π
t

(

rπD
t , Dt, . . . , DT

)

= ct ·
{

Xπ
t

(

rπD
t , Dt + eijl

)

− xπD
t

}

(10)

+ F π
t+1

(

Rπ
t+1

(

rπD
t , Dt + eijl

)

, Dt+1, . . . , DT

)

− F π
t+1

(

rπD
t+1, Dt+1, . . . , DT

)

.

In order to compute the quantity above, we now need to characterize
{

Xπ
t

(

rπD
t , Dt + eijl

)

− xπD
t

}

and
{

Rπ
t+1

(

rπD
t , Dt + eijl

)

− rπD
t+1

}

. These quantities are related to how the solution of the min-
cost network flow problem (7) changes when the upper bounds on the variable xt is increased
from Dt to Dt + eijl. The following result characterizes this change.

Proposition 3 Xπ
t

(

rπD
t , Dt + eijl

)

= xπD
t +ζπ

t (eijl, D), Rπ
t+1

(

rπD
t , Dt + eijl

)

= rπD
t+1+ηπ

t+1(eijl, D),
where ζπ

t (eijl, D) and ηπ
t+1(eijl, D) can be computed for all j ∈ I, l ∈ L by one min-cost flow

augmenting tree computation. Furthermore, ηπ
t+1(eijl, D) can be written as ηπ

t+1(eijl, D) =
ηπ+

t+1(eijl, D)− ηπ−
t+1(eijl, D), where in both of the vectors on right, exactly one element is equal

to +1 and all the other elements are equal to 0.

Then, the following result gives an efficient algorithm to compute Ψπ
t (eijl, D) for all i, j ∈ I,

l ∈ L and t ∈ T .

Proposition 4 If F π
t+1(·, Dt+1, . . . , DT ) is a separable function, then

Ψπ
t (eijl, D) =ct · ζ

π
t (eijl, D) + Φπ

t+1

(

ηπ+
t+1 (−ei, ej , D) , D)

)

+ Φπ
t+1

(

−ηπ−
t+1 (−ei, ej , D) , D)

)

,

(11)

where Φπ
t+1(∓ei, D) is as defined in (9).

In general F π
t+1(·, Dt+1, . . . , DT ) is not a separable function. However, our numerical exper-

iments show that (11) is an accurate approximation even when the separability assumption
does not hold.

6 Preliminary Numerical Experiments

Our first set of experiments show that (11) is an accurate approximation even when
F π

t+1(·, Dt+1, . . . , DT ) is not a separable function. Figure 1 shows the results for one particular
problem, where we compare the approximation to Ψπ

1 (eijl, D) (obtained through (11)) with the
exact value of Ψπ

1 (eijl, D) (obtained in brute force fashion by physically adding a load of type
l on lane (i, j) and simulating the behavior of policy π under load realization D). Different
data points correspond to different values of i, j ∈ I and l ∈ L. Figure 1 indicates that (11) is
an accurate approximation when the separability assumption is not satisfied.

Our second set of experiments investigates using (9) for fleet sizing. Our general approach is
along the lines of a gradient search method, where we increment the number of vehicles at
location i if E{Φπ

1 (ei, D)} is less than the cost of “leasing” a vehicle at location i over the
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Figure 1: (11) approximates Ψπ
1 (eijl, D) quite well when F π

2 (·, D2, . . . , Dt) is not separable.

Problem 1 2 3 4 5 6

% diff. 3.7 3.1 3.2 4.0 2.9 3.1

Figure 2: A gradient search-based algorithm that uses E{Φπ
1 (ei, D)} yields 3.1-4.0% better

results than deterministic state-time network-based models.

planning horizon. We approximate the expectation E{Φπ
1 (ei, D)} by using 10 demand realiza-

tions and averaging Φπ
1 (ei, D) over 10 realizations. As a benchmark, we use a deterministic

model based on the state-time network formulation of the problem (see, for example, Sherali
& Tuncbilek (1997)). Figure 2 shows that our approach yields significantly better solutions
than the benchmark method on all six test problems.
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