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1  Introduction 

For several decades, Operations Research has been successful in solving a wide variety of 
optimization problems in public transit (see Desaulniers and Hickman, 2003). Several 
commercial software packages based on mathematical programming techniques have been 
designed for and used by transit agencies to help in planning and running their operations. Among 
the problems faced by such agencies, operational planning deals with how the operations should 
be conducted to offer the proposed service at minimum cost. They include problems such as bus 
scheduling, driver scheduling, bus parking and dispatching in garages, and maintenance 
scheduling. 
 
In general, bus scheduling is performed before driver scheduling in the operational planning 
process of a public transit agency. On the one hand, since driver relief opportunities are numerous 
in most contexts, an efficient driver schedule can often be obtained from a near-optimal bus 
schedule to yield an overall high-quality solution. On the other hand, when these relief 
opportunities are rare, as for a line-by-line scheduling process, a very efficient bus schedule may 
lead to a poor or even an infeasible driver schedule. Integrating bus and driver scheduling is 
therefore essential in these situations, and research on this topic is presented in this paper. 

Le Gosier, Guadeloupe, June 13–18, 2004 



2                           TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis 

2  Problem Description 

Let T  be a set on n timetabled trips where trip i T∈  starts at time si and ends at time ei. These 

trips are qualified as active since passengers travel along them. Denote by ijτ  the travel time 

between the end location of trip i and the start location of trip j and assume that this travel time is 
the same for all buses. Two trips i and j are said to be compatible if and only if they can be covered 

consecutively by the same bus (j immediately following i), that is, if and only if .jij s≤+ie τ  The 

travel between two such trips is called a deadhead trip since there are no passengers onboard. 
 
Let K be the set of m depots housing the buses that must be assigned to cover the active trips. 
Depot  manages vKk ∈ k identical buses which must start and end their schedule at this depot. A 
bus leaving a depot to reach the start location of an active trip is said to be performing a pull-out 
trip, while it performs a pull-in trip when it returns to the depot from the end location of an active 
trip. A feasible schedule for a bus housed at depot k is composed of a pull-out trip starting at k, a 
sequence of active trips separated by deadhead trips, and a pull-in trip ending at k. A deadhead trip 
that involves a long waiting time before the start of the next active trip is often replaced by a 
pull-in trip, an idle period at the depot, and a pull-out trip. The bus schedules are seen as 
sequences of vehicle blocks, where each block consists of a sequence of trips that starts and ends 
at the same depot without returning to it in the middle of the sequence. Given that a cost is 
incurred each time that a bus performs an activity, the bus scheduling problem can be defined as 
the problem of finding a set of feasible bus schedules such that each active trip i  is covered 
by exactly one schedule, at most v

T∈
k buses are available at each depot Kk ∈ , and the sum of the 

schedule costs is minimized. Note that the active trips bear no cost since they represent a fixed 
quantity for any feasible solution. Note also that a fixed cost can be added to the pull-out or the 
pull-in trip costs. 
 
The driver scheduling problem is separable by depot and consists of determining the work days, 
also called duties, of the drivers based at a depot in order to cover all the vehicle blocks assigned 
to this depot. Since a driver exchange can occur at various points along a vehicle block, all blocks 
are divided into a sequence of segments according to these relief points. The consecutive 
segments along a block assigned to the same driver are collectively called a piece of work. Duties 
are therefore composed of pieces of work that are usually separated by breaks. Different duty 
types can be considered. These may be dissimilar, for instance, in terms of the number of pieces of 
work they can contain and their possible starting times and durations. In particular, there exist 
straight duties that contain a single piece of work, and split duties containing two pieces of work. 
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Driver duties are subject to a wide variety of safety regulations and collective agreements rules 
such as a maximum duty spread, a maximum duration of a piece of work, and a predefined time 
interval in which a break must be awarded. These rules vary according to the duty type. In general, 
one first seeks to minimize the total number of duties and second the total number of worked 
hours. In summary, the driver scheduling problem can be stated as follows: Given the segments of 
a set of vehicle blocks, find a set of valid duties that covers all these segments and minimizes total 
cost. 
 
Considering the above two problems together we obtain the integrated bus and driver scheduling 
problem which can be stated as follows: Given a set of timetabled trips and a fleet of buses 
assigned to several depots, find minimum-cost blocks and valid driver duties such that each active 
trip is covered by one block, each active trip segment is covered by one duty, and each inactive 
trip (e.g., deadhead, pull-in, and pull-out trips) used in the bus schedule is also covered by one 
duty. Each block must start and end at the same depot and driver duties must comply with a set of 
work rules. 

3  Solution Approach  

Haase, Desaulniers, and Desrosiers (2001) proposed a set partitioning formulation of the above 
integrated problem where the objective function minimizes the total number of duties and buses. 
The model involves only duty variables and one bus counter variable. Bus-count constraints, 
similar to the plane-count constraints of Klabjan et al. (2002) are considered in the model. These 
constraints provide lower bounds on the number of buses required at specific times of the horizon, 
namely each time that a bus can leave the depot to reach the beginning location of an active trip 
just in time. Solving this model provides optimal duties and ensures that an optimal bus schedule 
can be obtained a posteriori using a simple polynomial-time procedure.  
 
In this paper we consider an objective function that solely minimizes the total number of duties. 
Furthermore, constraints for counting the number of buses are not invoked. Nevertheless, as buses 
may idle in a parking lot in the middle of the day, one must ensure that that they will always return 
to their depot at the end of the day. Hence, constraints similar to those used to count the buses are 
imposed.  
 
For this version of the problem, we present computational experiments for the single depot 
version of the above formulation. We use a column generation solution approach to solve the 
linear relaxation of the model. We observe that the two-step procedure proposed by Freling, 
Wagelmans and Paixão (1999) and Freling, Huisman and Wagelmans (2003) to generate the duty 
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columns is much more efficient than the direct approach. At any column generation iteration, a 
constrained shortest path subproblem is solved as follows: First, pieces of work are generated by 
solving an all-pairs shortest path problem. Second, these pieces of work are combined to form 
valid duties. In the first step, a time discretization is used to eliminate the resource constraints 
even though this increases the number of shortest path problems to solve. A partial pricing 
strategy is used for overcoming this drawback (see Desaluniers, Desrosiers, and Solomon, 2002). 
Finally, we explore recent stabilization strategies that incorporate dual information at the 
beginning of the process to accelerate the overall solution approach (see du Merle, Villeneuve, 
Desrosiers, and Hansen, 1999). Overall, the approach is heuristic since we minimize the 
tailing-off effect of column generation and use a heuristic branching strategy. We report on tests 
conducted on data provided by GIRO Inc. for a single bus line of the City of Madrid. The largest 
of these problems involves 463 trips and 926 trip segments.  
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