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Abstract

In this paper, we apply the framework of genetic algorithms with population man-
agement (GA|PM) to the capacitated arc routing problem (CARP). GA|PM use distance
measures to control the diversity of a small population of high-quality solutions. The al-
gorithm is compared on the 23 GDB instances from Golden, DeArmon and Baker. The
GA|PM is able to retrieve the same solutions much faster than an improved memetic
algorithm, and can therefore be considered the best method to date.

1 The Capacitated Arc Routing Problem

The Capacitated Arc Routing Problem (CARP) is a vehicle routing problem raised by appli-
cations like urban refuse collection. It is defined on an undirected network G = (V,E), with a
set V of n nodes and a set E of m edges. A fleet of identical vehicles of capacity W is based
at a depot node. Each edge e can be traversed any number of times, each time with a cost
ce, and has a non-negative demand qe. All costs and demands are integers. The τ edges with
non-zero demands, called tasks, require service by a vehicle. The goal is to determine a set
of vehicle trips of minimum total cost, such that each trip starts and ends at the depot, each
required edge is serviced by one single trip, and the total demand handled by any vehicle does
not exceed W .
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The CARP is NP-hard and exact methods are still limited to small instances with at most
25 edges. Hence, larger instances must be solved in practice with heuristics. Among fast
constructive methods, one can cite for instance Path-Scanning or PS [5], Augment-Merge or
AM [6] and Ulusoy’s heuristic or UH [12]. Metaheuristics available are very recent and include
for instance tabu search [7] and guided local search [2]. The most effective algorithm is [9] an
improved version of a memetic algorithm (MA) presented by Lacomme, Prins and Ramdane-
Chérif at EURO-GP 2001 [8]. All these heuristics can be evaluated thanks to very good lower
bounds [1].

2 Principles of GA|PM

GA|PM (Genetic Algorithm with Population Management) is a new template of GA introduced
by Sörensen [11]. It is structured much like a standard GA, but differs in the use of population
management and local search. An outline is given in algorithm 1.

Algorithm 1 – GA|PM outline

1: initialise population P
2: set population diversity parameter δ
3: repeat

4: select: p1 and p2 from P
5: crossover: p1 ⊗ p2 → c1, c2

6: local search: on c1 and c2

7: for each child c do

8: if dP (c) ≥ δ then

9: remove solution: P ← P\b
10: add solution: P ← P ∪ c
11: end if

12: end for

13: update diversity parameter δ
14: until stopping criterion satisfied

GA|PM controls the diversity of a small population P of high-quality solutions. It requires
a distance measure d that determines for each pair of solutions their relative distance (or
similarity) in the solution space. Ideally, d should be a metric. Using this distance measure
between solutions, the distance of a child-solution c to the population can be defined as:

dP (c) = min
s∈P

d(c, s) (1)

A child-solution c may be added to P if its distance to the population is greater than or
equal to the current value of the diversity parameter δ (Equation 2). Otherwise, solution
c is discarded. Another possibility mentioned by Sörensen is to mutate c until it satisfies
Equation 2. The diversity parameter is dynamically adjusted to intensify or diversify the
search. Several distances and control policies for δ can be found in [11].

Le Gosier, Guadeloupe, June 13-18, 2004



TRISTAN V: The Fifth Triennal Symposium on Transportation Analysis 3

dP (c) ≥ δ (2)

Like GA|PM, memetic algorithms [10] include a local search procedure but they have no pop-
ulation management. Other approaches that use a small population of high quality solutions
include scatter search and path relinking [4]. GA|PM offers the advantage of being closer to
classical GA in terms of algorithm structure and therefore considerably easier to implement.

3 A GA|PM for the CARP

The GA|PM developed in this section uses several components of the effective memetic al-
gorithm proposed by Lacomme et al. [9] for the CARP. The common parts are described in
section 3.1. In section 3.2, we discuss the population management features of the GA|PM.

3.1 The existing memetic algorithm

Solution encoding The network is coded as a symmetric digraph, in which each edge is
replaced by two opposite arcs. A chromosome is an ordered list of the τ tasks, in which each
task may appear as one of its two directions. Implicit shortest paths are assumed between
successive tasks. The chromosome does not include trip delimiters and can be viewed as a
giant tour for an uncapacitated vehicle. A procedure Split optimally partitions (subject to the
sequence) the giant tour into feasible trips. The guiding function of the MA is the total cost
of the resulting CARP solution.

Initialization The small population P of (typically) nc = 30 chromosomes is initialized with
the solutions of the three CARP heuristics cited in introduction (PS, AM and UH), completed
by random permutations. The MA forbids clones (identical chromosomes) by using a simple
policy: at any time, P must contain solutions with distinct costs.

Selection and crossover At each iteration, two parents are selected by binary tournament
and reproduce according to a slightly modified version of the classical order crossover (OX).
One child is randomly selected, the other is discarded.

Local search The mutation is replaced by a local search procedure LS, called with a fixed
probability pls, which works on the individual routes computed by Split instead of the giant
tour. The moves include the removal of one or two consecutive tasks from a route, with rein-
sertion at another position, the exchange of two tasks, and 2-opt moves. All moves may involve
one or two routes and the two traversal directions of an edge are tested in the reinsertions.
Each iteration scans all these moves to perform the first improving move. LS stops when no
more improvement can be found. The trips are then concatenated into a chromosome, which
is re-evaluated by Split because this brings sometimes a further improvement.
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Population update The resulting child replaces one of the nc/2 worst chromosomes, ran-
domly chosen in the population and such that no clone is created. The MA stops after a given
number of iterations ni, after a stabilization period of ns iterations without improving the best
solution or when reaching a lower bound LB.

Restarts When the lower bound is not reached, nr short restarts are performed with an
intensified local search (rate plsr > pls). Each restart begins with a special procedure which
replaces ncr chromosomes by new ones (ncr < nc), while preserving the best solution. It stops
when the lower bound is achieved or after a given number of iterations nir (nir < ni).

3.2 Population management added

Distance measure Distances taking into account the partition of tasks into trips, like the
one proposed by Sörensen [11] for the VRP, give good results but are time-consuming. The
best results were obtained with a distance without trip delimiters that generalizes the distance
for R-permutations proposed by Campos et al. [3]. Consider two chromosomes with τ tasks for
the CARP, S and T . Let Si denote the i-th task of S and inv(Si) the other possible traversal
direction of Si. The classical distance between R-permutations counts the number of pairs of
consecutive tasks (Si, Si+1), i = 1, 2, . . . τ − 1, which are preserved (not broken) in T .

CARP solutions exhibit a property called reversal independence by Sörensen: the reverse
string represents the same solution. The GA|PM extends the distance for R-permutations to
handle reversal independence: a pair (Si, Si+1) is counted as broken if neither (Si, Si+1) nor
(inv(Si+1), inv (Si)) are found in T .

Control policy for the diversity factor Note that the distance takes its values in [1, τ−1].
The diversity factor δ is initialized to 1. After π iterations without improving the best solution
P (1), it is multiplied by a growth factor γ. Each time the best solution is improved, δ is reset
to 1. The growth of δ is stopped when it reaches a ceiling µ. In practice, µ is a fraction φ of
the maximum distance value.

3.3 Resulting GA|PM algorithm

The overall structure of the GA|PM for the CARP is given by Algorithm 2. F denotes
the objective function. The variable stuck counts the number of iterations with δ = µ. The
algorithm stops when a given lower bound LB is reached, when the distance keeps its maximum
value µ during σ iterations (stuck = σ) or when a maximum number of iterations ni is reached.
The restarts have exactly the same structure.

4 Results

The GA|PM is compared to the best-known algorithm: the memetic algorithm of Lacomme
et al. [9], described in 3.1 and called BMA in the sequel. The two algorithms are implemented in
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Algorithm 2 – GA|PM algorithm for the CARP

1: P leftarrow {the solutions of the CARP heuristics PS, AM and UH}
2: complete P using random chromosomes
3: sort P in increasing cost order
4: cni,stuck leftarrow 0
5: δ leftarrow 1
6: µ leftarrow φ · (τ − 1)
7: repeat

8: cni leftarrow cni + 1
9: select two parents P1, P2 by binary tournament

10: apply crossover OX to P1, P2 and choose one child C at random
11: evaluate C with Split

12: if random < pls then

13: improve C with the local search procedure LS

14: end if

15: draw k at random between bnc/2c and nc included
16: if F (C) < F (P (1)) or dP\P (k)(C) ≥ δ then

17: P (k) leftarrow C
18: shift P (k) to keep P sorted
19: end if

20: δ leftarrow min(µ, δ · γ)
21: if δ = µ then

22: stuck leftarrow stuck + 1
23: else

24: stuck leftarrow 0
25: end if

26: until (F (P (1)) = LB) or (stuck = σ) or (cni = ni)

Delphi and tested with and without restarts on the 23 GDB instances from Golden, DeArmon
and Baker [5], for which 21 proven optima are known.

BMA is not a pure memetic algorithm: even if it does not use a genuine distance measure
and a dynamic diversity control like GA|PM, it works on a small population and uses a simple
mechanism (the distinct costs) to spread solutions. This why a standard memetic algorithm
(SMA) is also included in the comparisons. SMA is derived from BMA by using a larger
population, allowing clones and suppressing restarts.

The results are given in Table 1: a) the average deviation in % to the excellent lower bounds
LB from Belenguer and Benavent [1], b) the worst deviation in %, c) the number of proven
optima (LB reached), d) the average running time in seconds on a 1.8 GHz Pentium IV PC
(Windows 2000), e) the number of instances requiring restarts (and, in brackets, the number
of instances for which restarts lead to an optimum) and f) the average number of crossovers.

The BMA row corresponds to the MA as published in [9], with the following parameters:
nc = 30, pls = 0.1, ni = 20000, ns = 6000, nr = 20, ncr = 22, plsr = 0.2 and nir = 2000.
In other words, BMA performs a main phase of at most 20000 crossovers, with 10% of local
search. If the given lower bound is not achieved, it executes up to 20 shorter restarts (max.
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2000 crossovers), in which 22 solutions are replaced and the local search rate is doubled. The
BMA-nr row concerns the same algorithm, but without restarts. The SMA row is obtained
with populations of nc = 60 chromosomes.

The GAPM-nr row corresponds to GA|PM without restarts, with pls = 0.5, π = 50, γ = 1.08,
φ = 0.5 (so, µ = 0.5× (τ − 1)) and σ = 1000. If φ is increased, too many children are rejected
and the algorithm spends too much time in unproductive iterations. The GAPM row provides
the results when restarts are added, with nr = 20, ncr = 28 (the two best solutions are kept),
plsr = 0.5 (local search rate is not modified) and nir = 2000. Various attempts with other
parameters settings provide slightly degraded results.

The SMA is very fast but it provides the worst deviations and finds only 15 optima. Compared
to the other GA without restarts (BMA-nr), the GA|PM decreases the average deviation to
LB and finds two more optima. The average number of crossovers is divided by 3. The running
time is only slightly improved, due to the overhead induced by distance computations and the
increased local search rate.

The results for the GAs with restarts show that GA|PM can find the same results as BMA, but
within one third of its running time. The average number of crossovers is practically divided
by 5. GA|PM finds an optimum solution without restarts for 20 instances out of 23, versus 18
for BMA.

Table 1: Summary of results

Algorithm Dev. LB Worst dev. LB hits Av. time Restarts Av. Xovers

SMA 0.65 4.07 15 0.37 0 2750.5
BMA-nr 0.33 2.23 18 0.95 0 3013.1
GAPM-nr 0.24 2.23 20 0.90 0 880.9
BMA 0.17 2.23 21 4.79 5(3) 9960.2
GA|PM 0.17 2.23 21 1.59 3(1) 1968.9

5 Conclusions and future work

This case study on the CARP shows that the GAs with population management are relatively
simple to implement and can retrieve all the optima found by the best solution method (a
memetic algorithm), but in a shorter running time. The number of crossovers is much smaller,
but the average time spent per crossover increases, due to the overhead induced by distance
computation and greater local search rate.

In the future we plan on applying the GA|PM to two sets of larger CARP instances described
by Belenguer and Benavent [1]. Application to other problems is another topic for future
research.
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