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1 Introduction

Ramp metering control is one of the most efficient freeway network traffic control measures
that, if properly applied, may result in significant amelioration of traffic conditions. Ramp
metering control strategies are divided into local and coordinated strategies. Local on-ramp
metering is based on information collected from sensors located in the vicinity of the con-
trolled on-ramp. Coordinated strategies take under consideration measurements taken from
a region covering the entire network, and control decisions for each metered on-ramp are co-
ordinated towards a common overall goal. A more powerful design approach is based on the
combination of the coordinated and local strategies within a hierarchical control structure,
as has been suggested in (Papageorgiou, 1984). This paper presents the combination of the
optimal coordinated model-based ramp metering control strategy AMOC (Advanced Motor-
way Optimal Control), see (Kotsialos et al., 2002b), with the well-known local feedback ramp
metering strategy ALINEA and a variation of it, see (Smaragdis and Papageorgiou, 2003).
The AMOC strategy considers the coordinated ramp metering problem as a finite horizon
constrained nonlinear discrete-time optimal control problem. The ALINEA strategy and its
variation flow-based ALINEA, are local feedback regulators based on downstream occupancy
or density and flow measurements, respectively. Based on the general receding-horizon model
predictive control approach, AMOC, ALINEA and flow-based ALINEA are combined in a
single hierarchical control structure. In this paper this structure is described, and results from
its simulated application to the Amsterdam ring-road are presented.

2 Local ramp metering feedback regulators

In this section the local ramp metering regulators ALINEA and flow-based ALINEA will be
described briefly, see (Smaragdis and Papageorgiou, 2003) for details. Figure 1 depicts a
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Figure 1: A controlled on-ramp.

controlled on-ramp o receiving traffic demand do which is added to the queue wo. This queue
feeds the freeway with a flow qo, which is controlled by the traffic light adjacent to the on-ramp.

The downstream freeway link µ is characterized by its critical density ρµ,cr measured in vehi-
cles/km/lane. ALINEA aims at driving and maintaining the density ρµ,1 of the first segment
(µ, 1) of link µ at near the predetermined set-point ρ̃µ,1, by regulating the on-ramp’s inflow to
the freeway qo. This is done according to the following feedback control law,

qr
o(kc) = qr

o(kc − 1) + KA [ρ̃µ,1 − ρµ,1(kc − 1)] (1)

where KA is the feedback gain and kc = 0, 1, . . . is the discrete time index of control application
related to the control sample time Tc (i.e., we have t = kc · Tc for the time t).

Flow-based ALINEA aims at driving the flow of segment (µ, 1) at the predetermined set-point
q̃µ,1 by regulating the on-ramp’s inflow to the freeway according to the feedback control law

qr
o(kc) = qr

o(kc − 1) + KF [q̃µ,1 − qµ,1(kc − 1)] (2)

where KF the feedback gain.

In order to avoid the creation of large queues, a queue control policy is employed in conjuction
with either of the two local metering strategies. Let wo,max denote the maximum allowed queue
in origin o. Then the queue control law takes the form

qw
o (kc) = −

1

Tc
[wo,max − w(kc)] + do(kc − 1). (3)

The on-ramp outflow is then qo(kc) := max {qr
o(kc), q

w
o (kc)}.

3 The AMOC strategy

The AMOC control strategy, (Kotsialos et al., 2002b), (Kotsialos and Papageorgiou, 2001),
considers the problem of optimal coordinated ramp metering control for a freeway network as a
constrained discrete-time nonlinear optimal control problem. In general terms such a problem
is formulated as follows,

J = ϑ [K] +

K−1
∑

k=0

ϕ [x(k),u(k),d(k)] (4)
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subject to

x(k + 1) = f [x(k),u(k),d(k)] , x(0) = x0 (5)

ui,min ≤ ui(k) ≤ ui,max ∀i = 1, . . . ,m (6)

where k is the model discrete time index (related to the model time-step T ), K is the considered
time horizon, x ∈ <n is the state vector, u ∈ <m is the vector of control variables, d is
the vector of external disturbances and ϑ, ϕ, f are arbitrary, twice differentiable, nonlinear
functions.

For the modeling of the traffic flow process, the freeway network is divided into links with
homogeneous characteristics and each link is divided into segments. The traffic conditions
in segment i of link m at time t = kT are macroscopically described by the traffic density
ρm,i(k) (veh/km/lane), the mean speed vm,i(k) (km/h) and the traffic flow or volume qm,i(k)
(veh/h). The traffic conditions at each origin (normal on-ramps and motorway ramps) o, are
described by the origin queues wo(k) (veh). Links may merge or diverge at network nodes
which are modelled by use of suitable static equations reflecting the corresponding traffic flow
interactions. As a result, the state vector of the freeway network traffic flow process consists
of the density and mean speed of every freeway segment and the queue of every origin, i.e.,
x = [ρ1,1v1,1 . . . ρ1,N1

v1,N1
. . . ρM,1vM,1 . . . ρM,NM

vM,NM
w1 . . . wO]T , where Nm is the number

of segments of freeway link m, M is the total number of freeway links in the network and O
is the number of origins.

The control vector consists of the inflows qo (veh/hour), o = 1, . . . , Oc, Oc ≤ O, of every
controlled origin. Actually, the control is modeled through the notion of the ramp metering
rate, but for the sake of simplicity and without losing anything substantial in our exposition,
we consider that qo is the control variable. As a result, the control vector takes the form
u = [q1 . . . qOc

]T , see (Kotsialos and Papageorgiou, 2001) for details. Equation (6) corresponds
to the minimum on-ramp outflow, chosen by the site operators, and the maximum possible
ramp outflow.

The disturbance vector d consists of the traffic demand do at every origin o and the turning
rates βm

n at every node n, n = 1, . . . , B, of the freeway with an off-ramp, or freeway bifurcation,
with m considered as the main outlink of n by convention. βm

n is the percentage of the flow at
junction n that chooses to follow the main outlink m. This means that the disturbance vector

is organized as d =
[

d1 . . . dOβm1

1 . . . βmB

B

]T
. Additional information could be included in the

disturbance vector, such as the weather conditions and their effect on the traffic process pa-
rameters or the existence of an incident with its characteristics (location, severity, etc.). These
disturbances can be accommodated appropriately by changing certain model parameters.

The process model (5) used for AMOC is the METANET model, see (Messmer and Papage-
orgiou, 1990), which has the required form (5).

The chosen cost criterion J is the Total Time Spent (TTS) including additional terms that
penalize large oscillations of the control variables and deviations from possible maximum ramp
queue constraints. The minimization of the TTS increases the system’s throughput, sustains
its operation at a high level near capacity, and results in fair ramp metering policies. A
feasible-direction algorithm is used for the numerical solution of the formulated problem, see
(Papageorgiou and Marinaki, 1995). This algorithm is known to converge under relatively
mild conditions, see (Fletcher, 2000).
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Figure 2: Hierarchical control structure.

4 Hierarchical control

The fact that the solution delivered from AMOC is an open-loop optimal control trajectory,
means that errors in the estimation of the initial state x0 and in the prediction of the future
disturbances as well as model inaccuracies will drive the system away from the expected
behavior. Since estimation, modeling and prediction errors are inevitable, a receding horizon
approach is employed to address the problem of mismatch between the predicted and actual
system behavior. For the problem of coordinated ramp metering in freeway networks, this
approach may take the form of a hierarchical control system, see figure 2.

The hierarchical control structure consists of three layers. The highest layer is the Estima-
tion/Prediction Layer. It receives as input historical data, information about incidents and
weather conditions, and real-time measurements from sensors installed in the freeway network.
All this information is processed in order to provide the current state estimation and future
predictions of the disturbances to the next layer. The Optimization Layer (AMOC) considers
the current time as t = 0 and uses the current state estimate as initial condition x0. Given the
predictions d(k), k = 0, . . . ,K − 1 the optimal control problem (4)–(6) is solved. The solution
of the optimal control problem is the optimal control trajectory and the corresponding optimal
state trajectory. These trajectories are forwarded as input to the decentralized Direct Control
Layer, that has the task to realize the suggested policy.

We distinguish between two different scenarios for the Direct Control Layer. In the first case,
the optimal control trajectories received from the Optimization Layer are directly applied to
the traffic process. In the second case, the optimal control trajectories are discarded and
only the optimal state trajectories are used. In this case, ALINEA and flow-based ALINEA
are employed as local regulators while the optimal state trajectory is used to determine the
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set-points for each particular on-ramp. For each on-ramp o with merging segment (µ, 1) a
local regulator is applied with control sample time kc = zc · k, zc ∈ N . We define the average
quantities ρ̄∗µ,1(kc) =

∑k+zc

z=k ρ∗µ,1(z)/zc and q̄∗µ,1(kc) =
∑k+zc

z=k q∗µ,1(z)/zc, where the ∗-index
denotes optimal values resulting from AMOC. If ρ̄∗

µ,1(kc) ≥ ρcr,µ then ALINEA is applied
during the period kc with set-point ρ̃µ,1 = ρ̄∗µ,1(kc). Otherwise, if q̄∗µ,1(kc) ≤ α · qµ,cap, where
qµ,cap is the downstream capacity and α a threshold parameter, then flow-based ALINEA is
applied for the period kc with set-point q̃µ,1 = q̄∗µ,1(kc). A typical value for α is 0.9. In any
other case, ALINEA is applied with ρ̃µ,1 = ρµ,cr. Note that the ramp queue control (3) is
applied in both scenarios to guarantee that the maximum queues are not exceeded as well as
to establish comparable conditions.

The local regulators operate with the optimal state trajectories for a period KP ≤ K, where
KP is the application horizon (as opposed to the optimization horizon), after which the whole
process is repeated, thereby closing the control loop of AMOC. The state estimation and
the disturbance predictions are updated, a new optimization is performed and the resulting
solution is used to determine the new local feedback regulators’ set-points.

5 Application to the Amsterdam ring-road

The control structure described in section 4 has been applied to the Amsterdam ring-road
(counter-clockwise direction only). This is a 32 km network with 21 on-ramps and 20 off-
ramps. The traffic flow process is simulated using the validated METANET modeling tool,
see (Kotsialos et al., 2002a). During the simulation horizon, the traffic demand and the turn-
ing rates of METANET are provided according to real measurements. These measurements,
however, are not given as input to AMOC. Instead we assume that the Estimation/Prediction
Layer provides AMOC with smooth trajectories of the actual demand trajectories, i.e. that a
very efficient demand predictor is available. Furthermore, we assume a perfect model and a
perfect state-estimator which is able to provide AMOC with complete information about the
current state of the system. Finally, we assume that a good predictor of the turning rates
is present, able to provide the (constant) mean value of every time-varying turning rate. In
figure 3a) an example depicting the measured and the predicted demand trajectories for a
given on-ramp is given, and in 3b) a similar example for a turning rate trajectory is given.

For all control scenarios, all the origins are controlled whereby the urban on-ramps have a
maximum queue equal to 100 vehicles, while motorway on-ramps have a maximum queue
equal to 200 vehicles.

The simulation horizon is 4 hours and in absence of control measures the resulting TTS
is 14,168 veh·hours. In the case of perfect disturbance prediction, the application of the
AMOC open-loop optimal control trajectories results in TTS equal to 6,974 veh· hours, an
improvement of 51%. This is the best that can be achieved which, however, cannot be realised
due to prediction and estimation errors.

Table 1 summarizes the results of the application of the hierarchical control when the opti-
mization horizon is 1 hour and the application horizon is 30, 20 and 10 minutes. The achieved
TTS for each scenario is shown together with the percentage of the improvement over the
no-control case and the difference with the optimal open-loop control case with perfect pre-
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Table 1: TTS for optimization horizon of 1 hour.
Application AMOC with local feedback control Direct application of AMOC

horizon TTS Improvement Difference with TTS Improvement Difference with

(veh·hours) over the the optimal (veh·hours) over the the optimal

no-control case open-loop case no-control case open-loop case

30 min 8,472 40.4% 21.5% 8,928 37.0% 28.0%

20 min 8,317 41.5% 19.3% 8,987 36.7% 28.7%

10 min 8,211 42.2% 17.7% 8,534 39.8% 22.4%
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Figure 3: Examples of measured and predicted disturbance trajectories.

diction and estimation. It may be seen that the use of the local feedback controllers results
in superior performance for all cases. The most efficient application horizon, for both cases
of Direct Control Layer implementation is 10 minutes. This is due to the fact that, more
frequent updating (feedback!) of the initial state and of the disturbances rejects all past mod-
eling/prediction/estimation errors and thereby improves the solutions provided by AMOC.
This is because the errors in the predictions of the disturbances make the state of the net-
work, as predicted by AMOC, to deviate from the actual state, as simulated by METANET.
The short application horizon helps AMOC to reduce this mismatch, which directly affects its
efficiency.

6 Conclusion

In this paper a hierarchical coordinated ramp metering control strategy based on the nonlin-
ear model-predictive approach was presented. A constrained nonlinear discrete-time optimal
control problem is combined with local feedback control, in order to render the optimal con-
trol solution more efficient in presence of various sources of modeling/prediction/estimation
mismatch. Further research needs to be conducted for different scenarios with respect to
disturbance and modeling errors, and the extent of the optimization and application horizons.
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