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1 Introduction

There are a number of problems in transportation that involve the dynamic assignment of re-
sources such as pilots, drivers, business jets, locomotives and tractors to tasks such as flights,
loads, passengers, trains and trailers. Although academic models of these problems will typ-
ically simplify the characteristics of the resources, production systems have to incorporate a
far higher level of detail, producing a rich set of attributes that capture the important charac-
teristics that are needed to model the problem accurately. Methods exist to handle this detail
in a deterministic world, but special challenges arise in the presence of uncertainty.

These problems are often solved myopically by optimally assigning the resources to tasks as
they become known. A resource may be assigned to one task at a time (producing a series
of dynamic assignment problems) or to multiple tasks (producing dynamic set partitioning
problems). The focus of this research is on methods for approximating the value of resources
in the future, so we are going to use the simplest possible dynamic model: we assume that
resources are assigned to at most one task at a time, and that unserved tasks are lost to the
system if they are not served in the time period in which they first become known.

2 A dynamic resource management model

To present a model of this simple problem:
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Rta = The number of resources with attribute a available to be assigned at time t.

A = Space of attributes of a resource, with element a ∈ A.

Ltb = The set of tasks to be served at time t.

B = The space of attributes of a task, with element b ∈ B.

R̂ta = The number of resources that first become known at time t with attribute a.

L̂tb = The number of tasks that first become known at time t with attribute b.

For our applications, the attribute vector a might have half a dozen to a dozen elements. The
attribute space A, discretized, might have several million elements. At any point in time, we
may act on our resources with one of two types of decisions:

Dl = The decision to assign a resource to a task. If d ∈ D l, then bd is the attributes
of the task that we are assigning the resource to.

Dm = The decision to modify a resource (by moving it geographically, or in other
ways such as repairing, cleaning, refueling, resting).

dφ = The “null decision” which is the decision to do nothing.

D = Dl
⋃

Dm
⋃

dφ.

A decision is represented using:

xtad =







1 If we act on a resource with attribute a ∈ A with decision d ∈ D at
time t.

0 Otherwise

xt = (xtad)a∈A,d∈D

If we act on a resource with decision d, we assume that we produce a modified resource with
attribute a′, which we represent using:

δa′(t, a, d) =







1 If decision d, applied to a resource with attribute a, produces a re-
source with attribute a′.

0 Otherwise .

ctad = The contribution if we assign a resource with attribute a to a task
with attribute b at time t.

The decisions have to be made subject to the static constraints:

∑

d∈D

xtad = Rta a ∈ A (1)

∑

a∈A

xtad ≤ Ltbd
d ∈ Dl (2)

In addition, we have to capture the dynamic constraints:

Rt+1,a′ = δa′(t, a, d)xtad + R̂t+1,a′ (3)

We assume that tasks are not held from one period to the next. As a result, our task state
vector is simply Lt+1,b = L̂t+1,b. Our state variable (the information we need to make a
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decision) is then given by St = (Rt, Lt). If we wish to solve the problem using a myopic policy,
we could form a contribution function:

Cπ
t (xt|St) =

∑

a∈A

∑

d∈D

ctadxtad (4)

and then solve:

Xπ
t (St) = arg max

x
Cπ

t (x|St) (5)

subject to (1)-(2). Here, π ∈ ΠM is a particular policy where ΠM is our class of myopic
policies (there can be more than one due to other choices that might be made in the choice of
contribution function or the resources that are considered in the optimization problem).

3 An approximate dynamic programming policy

Our goal is to produce a dynamic policy that considers the impact of decisions now on the
future. One class of dynamic policies add to the myopic contribution function an estimate of
the value of a resource in the future. Such a function would look like:

Cπ
t (xt|St) =

∑

a∈A

∑

d∈D

ctadxtad +
∑

a′∈A

v̄ta′

∑

a∈A

∑

d∈D

δa′xtad (6)

where:

v̄ta′ = The approximate value of a resource with attribute a′ using the information

available at time t.

Thus, if we act on a resource with attribute a with a decision d, we produce a resource with
attribute a′, and we value this resource using a linear approximation with slope v̄ta′ . Our
challenge is estimating v̄ta′ , which we do in a very simple way. We are going to step forward
through time, using a Monte Carlo sample of new information (R̂t(ω), L̂t(ω)). In this case,
solving the decision problem (5), even if we use (6) for the contribution function, is still a
simple assignment problem. Let:

v̂ta′(ω) = The dual variable for equation (1).

v̂ta′(ω) is a sample realization of a random variable V̂ta′ because it depends on the random
sample that we took to obtain the new arrivals of resources and tasks. Since v̂ta′(ω) is random,
we obtain an estimate of the value of a resource using a simple stochastic approximation
procedure:

v̄n
ta′ = (1 − αn)v̄n−1

ta′ + αnv̂n
ta′(ωn) (7)

where αn is a stepsize at iteration n. There is a sizable literature on stepsizes; these can be
deterministic, such as αn = a/(a+n), or stochastic, where the stepsize depends on the progress
of the algorithm.
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4 Using aggregation to improve accuracy

Regardless of how v̂ta(ω
n) is computed, we face the problem that if the attribute space A is

large, we simply are not going to be able to compute very many observations v̂ta′(ω) for each
element a′ ∈ A. Furthermore, experimental evidence indicates that there can be a high level
of variability in these values. As a result, the approximate values v̄n

ta′ can exhibit a fairly high
level of statistical error.

A natural way to overcome this statistical problem is to represent the approximate values at
a more aggregate level. Let:

Gg : A → Ag (8)

= A mapping from A to an aggregate attribute space Ag (9)

G = (0, 1, . . . , |G|) (10)

A family of aggregation functions, where g = 0 represents the most
disaggregate level

(11)

v̄g
ta′ = The approximate value of a resource with attribute a′ ∈ Ag. (12)

We compute v̄g
ta′ using:

v̄g,n
tag = (1 − αn)v̄g,n−1

tag + αnv̂n
ta(ω

n) a ∈ A, ag ∈ Ag (13)

where αn is a stepsize between 0 and 1.

Aggregation has been a widely studied topic in dynamic programming where it has been
viewed as a tool for reducing the size of the state space (see, for example, Mendelssohn, 1982,
Bertsekas and Castanon, 1989). Our interest is using aggregation to produce more accurate
estimates of a value function. One class of strategies involves using aggregation to reduce
statistical noise at the cost of introducing structural error. In this paper, we investigate the
idea of estimating the value of a resource at different levels of aggregation, and then using a
weighted combination of these estimates, as in:

v̄n
ta =

∑

g∈G

wg v̄g,n

tGg(a) (14)

Combining different estimates to produce a more robust statistic is a widely studied topic in
statistics (see, for example, Hastie, Tibshirani and Friedman, 2001). This strategy can also
be placed in the broader context of linear regression, where the weights are the coefficients
of different explanatory variables (Tsitsiklis, and Van Roy, 1997, Bertsekas and Tsitsiklis,
1996). In this setting, it is useful to take advantage of recursive estimation techniques (see,
for example, Ljung and Soderstrom, 1983) to estimate the parameters at each iteration.

George, Powell and Kulkarni (2003), have derived formulas for the weights that are shown to
be optimal (in terms of minimizing the variance of the estimates). The idea is similar to the
standard formula for combining the estimates of two parameters from Bayesian theory:

w(g) =
1

σ(g)2





∑

g′∈G

1

σ(g′)2





−1

∀ g ∈ G (15)
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These weights use the inverse of the variance of the statistics. The weights are optimal if
the variances are known, and if the statistics are independent. In practice, neither is true.
George, Powell and Kulkarni (2003) found the optimal weights that account for the lack of
independence of hierarchically estimated weights, but also found that while the weights can
be significantly different from those given in equation (15), the quality of the estimates were
virtually identical, especially for the case where the variances are not known a priori. For the
case where the variances are not known, a variation of (15) proved to work quite well. The
variation requires estimating the variances of the statistics from data. The standard formula
for estimating variances is:

s(g)
a

2
= The sample variance of the observations corresponding to the esti-

mate v̄
(g)
a .

=
1

N
(g)
a − 1

∑

n∈N
(g)
a

(

v̄(g)
a − v̂n

a

)2

where N
(g)
a is the number of observations of the gth level of aggregation of attribute a. This

formula, however, ignores the fact that the estimate of the value of a resource at an aggregated
level will generally be biased (due to the structural error). We need to estimate the variance
reflecting both the noise as well as the bias. For this purpose, we estimate:

µ̃(g)
a = An estimate of the bias in the estimate, v̄

(g)
a , with respect to the true value.

= v̄(g)
a − v̄(0)

a

The weights, then, are given by:

w(g)
a =

1

s
(g)
a

2

N
(g)
a

+ µ̃
(g)2

a







∑

g′∈G

1

s
(g′)
a

2

N
(g′)
a

+ µ̃
(g′)2

a







−1

(16)

5 Some experimental results

This formula was applied to a dynamic programming problem involving the management of
drivers. For the purposes of estimating the value of drivers in the future, three types of
attributes were considered:

• Location of the driver - This was represented at three levels of aggregation: “trade area”
(the finest level, with about 400 points to cover the continental U.S.), “region” (100)
and “area” (10).

• Driver domicile - This captures the home location of the driver, which were represented
at the level of “regions” and “areas.”

• Driver type - Drivers were organized into three major groups: teams (two drivers per
tractor), solos (one company driver per tractor), and independent contractor (solo drivers
who owned their own equipment).
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Level of Driver Fleet Number of

aggregation Location domicile type possible attributes

1 Trade area Region I 120,000

2 Region Region I 30,000

3 Region Area I 3,600

4 Region X I 300

5 Area X I 36

6 Area X X 12

7 X X X 1

Table 1: Levels of aggregation used to represent the driver attributes for the value function. “I”
means the attribute was included without aggregation, “X” means the attribute was excluded.
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Figure 1: Weights at each level of aggregation at each iteration, showing the increasing weight
given to the disaggregate levels as the algorithm progresses.

Each of these three dimensions can also be aggregated by completely ignoring them. Table 1
shows the seven levels of aggregation that we tested. Figure 1 shows the weights given to each
level of aggregation as the algorithm progressed. The figure shows that the more aggregate
levels were given higher weights in the beginning. After approximately 500 iterations, the
weights decreased monotonically with the level of aggregation, with the most disaggregate
level receiving the highest weight (on average).

This paper opens up a variety of issues that fall under the umbrella of “approximate dynamic
programming.” This work is starting to emerge from the arena of small, specialized problems
into problems that are of interest to the transportation and logistics community. This topic
could be easily expanded into a tutorial that would be very relevant to anyone working on
dynamic routing and scheduling problems.
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