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1  Introduction 

In recent years, researchers have become increasingly interested in the effects of introducing 
different road pricing measures on transportation networks. Who is involved in decision-making 
and how should decisions be made? How will travelers change their travel behavior after the 
introduction of road pricing? How will travelers interact with each other and how can the road 
authority influence or even control travel behavior of travelers? To answer such questions we 
need to establish a flexible and generic framework for analyzing the behavior of travelers as well 
as the road authority.  
 
Game theory provides such a framework for modeling decision-making processes in which 
multiple players are involved with different objectives, rules of the game and assumptions. Yang 
and Yagar (1995) formulated the control-assignment problem using game theory. The integrated 
traffic control problem and the dynamic traffic assignment problem as a non-cooperative game 
between traffic authority and highway users is presented in the work of Chen and Ben-Akiva 
(1998). Tolling at a frontier and an application of game theory and queuing analysis to develop 
micro-formulations of congestion can be found in Levinson (1988, 2003). Considering the 
problem of designing optimal tolls on the network, there is a need for better insights into the 
interactions between travelers and the road authority, the nature and the consequences of this 
interaction. In this paper we aim at analyzing a very simple route choice problem with elastic 
demand where road pricing is introduced in a game theoretic framework. First, the road pricing 
problem is formulated using game theory notions, and different games are described. After that, a 

Le Gosier, Guadeloupe, June 13–18, 2004 



2                           TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis 

game-theoretic approach is applied to formulate the road pricing game as monopoly, Stackelberg, 
and Cournot game, respectively. The main purpose of the experiment reported here is to show the 
outcomes of different games established for the optimal design toll problem. 

2  Game theory applied to road pricing 

In the road pricing problem, we are dealing with an N+1-player game, where there are N players 
(travelers) making a travel choice decision, and one player (the road manager) making a control or 
design decision (in this case, setting road tolls). In fact, there are two games played in conjunction 
with each other. The first game is a non-cooperative game where all N travelers aim to maximize 
their own utility by choosing the best travel strategy (e.g. route choice), taking into account all 
other travelers’ strategies. The second game is between the travelers and the road manager, where 
the road manager aims to maximize some network performance by choosing a control strategy, 
taking into account that travelers respond to the control strategy by adapting their travel strategies. 
The definitions and notation used here are adapted from Altman et al. (2003). 
 
Consider first the N-player game of the travelers, where  is the set of available alternatives for 
each traveler i, i  The strategy 

iS
{1, , }.∈ K N ∈i is S that each traveler i will play depends on the 

control strategy set by the road manager, denoted by vector ,θ  and on the strategies of all other 
players, denoted by 1 1 1, , ,− −Ki i i( ,≡ , ).+ K Ns s s s s  We assume that each traveler makes his decision 
independently and unilaterally seeks the maximum utility payoff, taking into account the possible 
rational choices of the other travelers. Let ( ), (( ) ),θ θ θ−i iJ s is  denote the utility payoff for traveler 
i for a given control strategy .θ  The utility payoff can include all kinds of travel utilities and 
travel costs. If all other travelers play strategies * ,−is  then traveler i will play the strategy that 
maximizes his payoff utility, i.e. 
 

( )* *( ) arg max ( ), ( ), .*θ θ θ θ−∈
=

i i
i i i is S

s J s s  (1)

 
If Equation (1) holds for all travelers {1, , },∈ Ki  then N * * *( ) ( ( ), ( ))θ θ θ−≡ i is s s  is called a Nash 
equilibrium for the control strategy .θ  In this equilibrium, no traveler can improve his utility 
payoff by unilateral deviation. Note that this coincides with the concept of a Wardrop 
user-equilibrium. 
 
Now consider the complete N+1-player game where the road manager faces the N travelers. The 
set Θ  describes the alternative strategies available to the road manager. Suppose he chooses 
strategy .θ ∈Θ  Depending on this strategy and on the strategies chosen by the travelers, *( ),θs  
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his utility payoff is denoted by *( ( ), ),θ θR s  and may represent e.g. the total system utility or to 
the total profits made. The road manager chooses the strategy *θ  in which he aims to maximize 
his utility payoff, depending on the responses of the travelers: 

θ =

*( ).

* *(s

 
( )* *arg max ( ), .

θ
θ θ θ

∈Θ
= R s  (2)

 
If Equations (1) and (2) are satisfied for all N+1 players, where *θ  in Equation (1), then this is 
a Nash equilibrium in which no player can be better off by unilaterally playing another strategy. 
Although all equilibriums use the concept of Nash, depending on the influence each of the players 
has in the game, a different equilibrium or game type can be defined in the N+1-player game. We 
can distinguish the following games: 
(a) Monopoly game – The road manager not only sets its own control, but also controls the 

strategies that the travelers will play. In other words, the road manager sets *θ  as well as 
.*s This will lead to a so-called system optimum. 

(b) Stackleberg game – The road manager is the ‘leader’ by setting the control, thereby directly 
influencing the travelers which are ‘followers’. The travelers only indirectly influence the 
road manager by making travel decisions based on the control. It is assumed that the road 
manager has complete knowledge of how travelers respond to control measures. The road 
manager sets *θ  and the travelers follow by playing * θs  

(c) Cournot game – In contrast to the Stackleberg game, the travelers are now assumed to have a 
direct influence on the road manager, having complete knowledge of the responses of road 
manager to their decisions. The road manager sets ),θ  depending on the travelers 
strategies * *( ).θs  

 
The different game concepts will be illustrated in the next section. It should be pointed out that the 
Stackleberg game is the most realistic game approach. This is a dynamic game and can be solved 
using the backwards induction method, see e.g. Basar and Olsder (1995). For more complex 
games, mathematical bi-level problem formulations can be used for solving these games, see e.g. 
Joksimovic et al. (2004). 

3  A few experiments 

In this section we will look at the following simple problem to illustrate how the road pricing 
problem can be analyzed using game theory. Suppose there are two travelers traveling from origin 
A to destination B. There are two alternative routes available to go to B. The first route is tolled 
(toll is equal to θ ), the second route is untolled. Depending on the toll, the travelers can decide to 
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take either route 1 or route 2, or not to travel at all. The third choice is represented by a third 
virtual route, such that we can consider three route alternatives as available strategies to each 
traveler, i.e.  for traveler i = 1,2. Figure 1 illustrates the problem. {1,2,3}=iS

( ))
0,

ατ
θ θ

 −
= −



U

 

A                                      B

route 1 (tolled)

route 2 (untolled)

‘route 3’ (do not travel)
 

 
Figure 1:  Network description of the road pricing problem 

 
Each strategy yields a different utility, depending on the utility to make the trip, the travel time on 
the route (that increases whenever more travelers use it) and a possible route toll. We assume that 
each traveler i aims to maximize his/her individual travel utility (payoff,) given by 
 

1 1 2

1 2 2 1 2

( ( ), ( )) , if  ( ) 1,
( ( ), ( ( ), ( )), if  ( ) 2,

if  ( ) 3.

θ θ θ θ
ατ θ θ θ

θ

− =
=
=

i

i i

i

U s s s
J s s s s s

s
 (3)

 
In Equation (3), U  represents the trip utility when making the trip to destination B (we assume 
that 210=U ), ( )τ ⋅r  denotes the route travel time for route r depending on the chosen strategies, 
and α  represents the value of time (we assume that 6α =  for all travelers). Note that negative 
net utilities on route 1 and 2 means that one will choose not travel, i.e. if the cost (disutility) of 
making the trip is larger than the utility of the trip itself. The route travel times are given as a 
function of the chosen strategies in the sense that the more travelers use a certain route, the higher 
the travel time: 
 

1 2
1 1 2

1 2

10, if  ( ) 1  or  ( ) 1  (e.g. route flow on route 1 is 1),
( ( ), ( ))

18, if  ( ) 1  and  ( ) 1  (e.g. route flow on route 1 is 2),
θ θ

τ θ θ
θ θ

= =
=  = =

s s
s s

s s
 (4)

 
and 
 

1 2
1 1 2

1 2

20, if  ( ) 2  or  ( ) 2  (e.g. route flow on route 2 is 1),
( ( ), ( ))

40, if  ( ) 2  and  ( ) 2  (e.g. route flow on route 2 is 2).
θ θ

τ θ θ
θ θ

= =
=  = =

s s
s s

s s
 (5)
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Solving the game between the two travelers for a Nash equilibrium corresponds to a Wardrop 
equilibrium with elastic demand, in which no traveler can improve his/her utility by unilaterally 
changing route or deciding not to travel. For the sake of clarity we will only look at pure 
strategies1 in this example, but it may be extended to mixed strategies. The utility payoff table, 
depending on the toll ,θ  is given below in Table 1 for the two travelers, where the values between 
brackets are the payoffs for travelers 1 and 2, respectively. 
 
  Traveler 2 
  Route 1 Route 2 Route 3 

Route 1 (102 ,102 )θ θ− − (150 , 90)θ−  (150 , 0)θ−  
Route 2  (90,150 )θ−  ( 30, 30)− −  (90, 0)  Traveler 1 
Route 3 (0,150 )θ−  (0, 90)  (0, 0)  

Table 1:  Utility payoff table for travelers 
 
For example, if traveler 1 chooses route 1 and traveler 2 choose route 2, then the travel utility for 
traveler 1 is 1(1,2) 210 6 10 150 .θ θ= − ⋅ − = −J  Now, let us add the road manager as a player, 
assuming that he tries to maximize the total system utility, i.e. 
 
( )* *

1 2( ), ( ( )) ( ( )).*θ θ θ= +R s J s J s θ  (6)

 
The strategy set of the road manager is assumed to be { | 0}.θ θΘ = ≥  Depending on the strategy 
θ ∈Θ  that the road manager plays and depending on the strategies the travelers play, the payoffs 
for the road manager are presented in Table 2. 
 
  Traveler 2 
  Route 1 Route 2 Route 3 

Route 1 204 2θ−  240 θ−  150 θ−  
Route 2  240 θ−  60−  90  Traveler 1 
Route 3 150 θ−  90  0  

Table 2:  Utility payoff table for the road manager 
 
Let us solve the previous defined payoff tables for different game concepts and different values of 
tolls. First, we discuss the monopoly game, then the Stackleberg game and finally the Cournot 
game.  

                                                      
1 In pure strategies, each player chooses only one strategy, whereas in mixed strategies, there are probabilities for 
choosing each strategy. In terms of a Wardrop user-equilibrium, we are looking at discrete flows instead of continuous 
flows. Wardrop’s first principle that all travel utilities are equal for all used alternatives may no longer hold in this case. 
In fact, the more general equilibrium rule applies in which the travelers aim to maximize the minimum travel utility for 
all players.  
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Monopoly game 
 

In the monopoly game, the road manager sets the toll as well as the travel decisions of the 
travelers such that his utility is maximized. Note that the utility always decreases as θ  increases, 
hence  In this case, the maximum utility can be obtained if the travelers distribute 
themselves between routes 1 and 2, i.e. 

* 0.θ =
{ }* (1,2),(2,1) .=s  Hence, in this system optimum, the 

total travel utility in the system is 240. Note that this optimum would not occur if travelers have 
free choice, since 0θ =  yields a Nash-Wardrop equilibrium for both travelers to choose route 1. 
 

Stackleberg game 
 
Now the travelers will maximize individually their own travel utility, depending on the toll set by 
the road manager. Figure 2 illustrates the total system utility for different values of θ  with the 
corresponding optimal strategies played by the travelers. When 0 12,θ≤ <  travelers will both 
choose route 1. If 12 150,θ≤ <  travelers distribute themselves between route 1 and 2, while for 

150θ ≥  one traveler will take route 2 and another traveler will not travel at all. Clearly, the 
optimum for the road manager is  yielding a total system utility of 228. * 12,θ =
 

90

180
204
228

{ }* ( ) (1,1)θ =s { }*( ) (1,2),(2,1)θ =s { }*( ) (2,3),(3,2)θ =s
θ

*( ( ), )θ θR s

12 150
 

Figure 2:  Total system utility depending on toll value 
 

Cournot game 
 

It can be shown that when the travelers and the road manager have equal influence on each others 
strategies, that there are multiple Cournot solutions. There is however one dominating strategy, 
being that the travelers both take route 1 and that the road manager sets zero tolls, yielding a total 
system utility of 204. 
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The following table summarizes the outcomes for the different games.  
 
Game *θ  ( )* θis  R  iJ  

Monopoly 0 ( ) ( ){ }1,2 , 2,1  240 ( ) ( ){ }90,50 , 50,90  

Stackelberg 12 ( ) ( ){ }1,2 , 2,1  228 ( ) ( ){ }78,50 , 50,78  

Cournot 0 ( ){ }1,1  204 ( ){ }102,102  

Table 3:  Comparison between outcomes of different games 

4  Conclusions 

The purpose of the paper was to gain more insight into the road pricing problem using concepts 
from game theory. The theory presented here can be extended to include e.g. departure time 
choice, heterogeneous travelers and imperfect information.  
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