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1 Introduction

The m-Peripatetic Salesman Problem (m-PSP) is defined on a complete graph G = (V,E),
where V = {1, . . . , n} is a vertex set and E = {(i, j): i, j ∈ V , i < j} is an edge set. A
cost matrix C = (cij) is defined on E. The problem consists of determining m edge disjoint
Hamiltonian cycles of minimum total cost on G. When m = 1 the m-PSP reduces to the
Traveling Salesman Problem (TSP). In the sequel we assume that m < (n − 1)/2 to avoid
trivial or infeasible cases.

The m-PSP was introduced by Krarup (1975). Applications include the design of watchman
tours (Wolfter Calvo and Cordone, 2003) where it is often important to assign a set of edge-
disjoint rounds to the watchman in order to avoid always repeating the same tour and thus
enhance security. In the same spirit, De Kort (1993) cites a network design application where,
in order to protect the network from link failure, several edges-disjoint cycles must be deter-
mined. This author also mentions a scheduling application of the 2-PSP where each job must
be processed twice by the same machine but technological constraints prevent the repetition
of identical job sequences.

De Kort (1993) shows that the 2-PSP is NP-hard by transforming an instance of the Hamilto-
nian Path problem into a 2-PSP. A similar reasoning can be applied to the case where m > 2.
While the undirected TSP is also an NP-hard problem, medium size instances can easily be
solved in practice (see, e.g., Padberg and Grötschel, 1985; Applegate, Bixby, Chvátal and
Cook, 2003). A natural question is then whether TSP algorithms can be used to provide good
or optimal m-PSP solutions. A partial answer is obtained by applying the following “Krarup
heuristic” (Krarup, 1975): solve a first TSP on G (exactly or by means of a heuristic) and
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remove from the graph all edges of the TSP solution; repeat until m Hamiltonian cycles have
been obtained. Krarup shows that even if the TSPs are solved optimally, this heuristic does
not always yield an optimal m-PSP solution.

In addition to Krarup’s seminal contribution, only a few scientific articles are available on
the m-PSP. De Kort (1991) derives a lower bound based on the solution of a capacitated
transportation problem and develops a branch-and-bound algorithm (De Kort, 1993) based
on a 3-index formulation. Numerical results for n ≤ 60 and m = 2 are reported. Finally, De
Kort and Volgenant (1994) have analyzed a generalization of the 2-PSP in which each cycle
contains each vertex at most once and a penalty is incurred for vertices not included in a cycle.

Our aim is to provide exact solution procedures for the undirected m-PSP with a general
value of m. For this we develop several algorithms using an integer linear programming
formulation and a relaxation of the problem. The first algorithm is a branch-and-cut algorithm
based on the 3-index formulation of De Kort. The other algorithm uses a 2-index relaxation
which give possible solutions thanks to a branch-and-cut algorithm. The resulting graph is
then decomposed into triconnected components and the branch-and-cut based on the 3-index
formulation is applied on each component. This offers the advantage of splitting the initial
graph into subproblems of smallest sizes.

2 3-index formulation

The undirected m-PSP can easily be modeled by means of a 3-index formulation. Let xijk (i <
j) be a binary variable equal to 1 if and only if edge (i, j) appears on cycle k. The model is
then

(3-index) minimize

m∑

k=1

∑

i<j

cijxijk (1)

subject to

∑

i<h

xihk +
∑

j>h

xhjk = 2 (h ∈ V ; k = 1, . . . ,m) (2)

∑

i,j∈S

i<j

xijk ≤ |S| − 1 (S ⊂ V, 3 ≤ |S| ≤ bn/2c; k = 1, . . . ,m) (3)

m∑

k=1

xijk ≤ 1 (i, j ∈ V ; i < j) (4)

xijk = 0 or 1 (i, j ∈ V ; i < j; k = 1, . . . ,m). (5)

This model can be strengthened through the introduction of any valid inequality for the TSP.
To solve this model, we have developed a branch-and-cut algorithm in which we have used the
two most useful families of TSP valid inequalities (Grötschel and Padberg, 1985): 2-matching
inequalities and comb inequalities.
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3 2-index relaxation

A 2-index relaxation can be derived from 3-index by aggregating the decision variables, i.e.,
by defining binary variables xij =

∑m
k=1 xijk. Thus we obtain the model

(2-index) minimize
∑

i<j

cijxij (6)

subject to

∑

i<h

xih +
∑

j>h

xhj = 2m (h ∈ V ) (7)

∑

i,j∈S

i<j

xij ≤ m(|S| − 1) (S ⊂ V, 2m ≤ |S| ≤ bn/2c) (8)

xij = 0 or 1 (i, j ∈ V ; i < j). (9)

This 2-index model can be used to compute a lower bound on the m-PSP solution value and,
as will be shown, it can serve as a basis for an exact algorithm. In addition, it can be reinforced
through the inclusion of somes valid inequalities.

Proposition 1 The 2-matching inequalities

∑

(i,j)∈E(H)

xij +
∑

(i,j)∈E′

xij ≤ m|H| + (|E ′| − 1)/2, (10)

where H ⊂ V , E ′ ⊂ E, |E′| ≥ 3 and odd, |{i, j}∩H| = 1 for all (i, j) ∈ E ′, and {i, j}∩{h, `} =
∅ for all (i, j), (h, `) ∈ E ′, (i, j) 6= (h, `), are valid for 2-index.

Proposition 2 If m is odd, the comb inequalities

∑

(i,j)∈E(H)

xij +

r∑

`=1

∑

(i,j)∈E(T`)

xij ≤ m|H| + m

r∑

`=1

(|T`| − 1) − (mr + 1)/2, (11)

where H, T1, . . . , Tr ⊂ V , r ≥ 3 and odd, H ∩ T` 6= ∅ and T` \ H 6= ∅ (` = 1, . . . , r), and

Th ∩ T` = ∅ (h, ` = 1, . . . , r, h 6= `), are valid for 2-index.

We can also use the projection of valid inequalities for the 3-index model.

Proposition 3 The projected 2-matching inequalities

∑

(i,j)∈E(H)

xij +
∑

(i,j)∈E′

xij ≤ m|H| + m(|E ′| − 1)/2, (12)

where H ⊂ V , E ′ ⊂ E, |E′| ≥ 3 and odd, |{i, j}∩H| = 1 for all (i, j) ∈ E ′, and {i, j}∩{h, `} =
∅ for all (i, j), (h, `) ∈ E ′, (i, j) 6= (h, `), are valid for the m-PSP.
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Proposition 4 The projected comb inequalities

∑

(i,j)∈E(H)

xij +

r∑

`=1

∑

(i,j)∈E(T`)

xij ≤ m|H| + m

r∑

`=1

(|T`| − 1) − m(r + 1)/2, (13)

where H, T1, . . . , Tr ⊂ V , r ≥ 3 and odd, H ∩ T` 6= ∅ and T` \ H 6= ∅ (` = 1, . . . , r), and

Th ∩ T` = ∅ (h, ` = 1, . . . , r, h 6= `), are valid for the m-PSP.

The role played by this two projected constraints is different: the projected 2-matching in-
equalities are dominated by the valid 2-matching inequalities but the projected comb inegalities
are better than the valid comb inegalities since they reinforce the relaxation.

To solve our problem, we have developed a branch-an-cut algorithm which solve this relaxation
with constraints (10) and (13). As soon as a solution is found, we must check that the
solution is a m-PSP feasible solution. To do this, we split the resulting graph into triconnected
components and we verify that these subgraphs can be decomposed into m Hamiltonian paths
using the 3-index algorithm. If all these subgraphs can be decomposed, at least one m-PSP
feasible solution is obtained; otherwise, we add constraints, which eliminate the infeasible
subgraph into the 2-index relaxation and the branch-and-cut process continues.

4 Computational results

The algorithms just described were coded in C++ and run on a Compaq AlphaServer DS20
biprocessor EV6/500. All integer linear programs were solved with CPLEX 6.6. TSPs were
solved using the Padberg and Rinaldi (1991) code. The algorithms were stopped after 1800
CPU seconds. Tests were performed on TSPLIB instances for m = 2 and 3 to facilitate future
comparisons between different algorithms. Computational results are summarized in Table 1.
The table headings are as follows:

n: number of vertices in G;

m: number of edge-disjoint cycles in the solution;

OPT: optimal m-PSP solution value;

SECONDS: CPU time in seconds (The symbol - indicates that the algorithm did not found
the optimal solution within 1800 seconds).

Table 1 show that the 2-index algorithm clearly outperforms than the 3-index algorithm. This
can be explained by the two followings observations. First, the Krarup heuristic gives a good
upper bound. Second, the 2-index relaxation provides a quite sharp lower bound. We also do
computational experiments on randomly generated euclidean and non euclidean instances and
for m = 4, 5. These additional experiments confirm our observations on the TSPLIB instances.
We observed that the complexity increase strongly with m and n. In our computational tests,
the larger instance we solved within 1800 seconds is an instance with n = 144 and m = 2.
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Table 1: Success rate and computation time for the two algorithms on TSPLIB instances.

3-index Algorithm 2-index Algorithm

Problem n m OPT SECONDS SECONDS

burma14 14 2 7537 1 0

burma14 14 3 12902 24 0

gr17 17 2 4915 3 0

gr17 17 3 9005 91 0

gr21 21 2 6900 11 0

gr21 21 3 12486 295 0

gr24 24 2 3147 130 0

gr24 24 3 5614 0 0

fri26 26 2 2218 39 0

fri26 26 3 3974 - 0

bayg29 29 2 3737 26 0

bayg29 29 3 6554 - 1

bays29 29 2 4694 12 0

bays29 29 3 8332 - 1

eil51 51 2 982 - 7

eil51 51 3 1737 - 14

eil76 76 2 1257 - 11

eil76 76 3 2141 - 87

rat99 99 2 2928 - 465

rat99 99 3 5128 - 577
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5 Conclusion

We have presented new valid inequalities and algorithms for the undirected m-Peripatetic

Traveling Salesman Problem, a variant of the classical Traveling Salesman Problem. To our
knowledge, this is the first time exact results are presented for m ≥ 3.
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