
TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis 1

New Refinements for the Solution of Vehicle Routing

Problems with Column Generation

Dominique Feillet∗ Michel Gendreau† Louis-Martin Rousseau†

∗Laboratoire d’Informatique d’Avignon
339 Chemin des Meinajariés

BP 1228, 84911 Avignon France
dominique.feillet@lia.univ-avignon.fr

†Center for Research on Transportation, Montreal University
C.P. 6128, Succursale Centre-Ville

Montreal, H3C 3J7 Canada
michelg@crt.umontreal.ca

Introduction

Vehicle Routing Problems (VRP) are widely present in today’s industries, ranging from distri-
bution problems to fleet management. They account for a significant portion of the operational
costs of many companies. If most real instances of VRPTW are solved with heuristic methods,
the desire to produce optimal or near optimal solutions has always motivated the research in
the area of exact methods.

The Vehicle Routing Problem (VRP) can be described as follows: given a set of customers, a set
of vehicles, and a depot, find a set of routes of minimal length, starting and ending at the depot,
such that each customer is visited by exactly one vehicle. Each customer having a specific
demand, there are usually capacity constraints on the load that can be carried by a vehicle. In
addition, a maximum amount of time that can be spent on the road is sometimes considered.
The time window variant of the problem (VRPTW) imposes the additional constraint that
each customer must be visited during a specified time interval. One can wait in case of early
arrival, but late arrival is not permitted.

Section 1 will briefly review the column generation approach for the VRPTW. Section 2 will
present an overview of the different ideas we propose. Experimental results evaluating the
techniques are provided in section 3.

Le Gosier, Guadeloupe, June 13-18, 2004

2 TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis

1 Column Generation

Column generation was introduced by Dantzig and Wolfe [2] for the solution of linear programs
with decomposable structures. It has been applied to many problems with success and has
become a leading optimization technique to solve Routing and Scheduling Problems [4, 1].

In the first application of column generation to the field of Vehicle Routing Problems with Time
Windows, presented by Desrochers et al. [3], the basic idea was to decompose the problem into
sets of customers visited by the same vehicle (routes) and to select the optimal set of routes
between all possible ones. Letting r be a feasible route in the original graph (which contains
N customers), R be the set of all possible routes r, cr be the cost of visiting all the customers
in r, A = (air) be a Boolean matrix expressing the presence of a particular customer (denoted
by index i ∈ {1..N}) in route r, and xr be a Boolean variable specifying whether the route r

is chosen (xr = 1) or not (xr = 0), the Set Partitioning formulation is defined as (S):

min
∑

r∈R

crxr (1)

s.t
∑

r∈R

airxr = 1 ∀i ∈ {1..N} (2)

x ∈ {0, 1}|R| (3)

This formulation however poses some problems. Firstly, since it is impractical to construct and
to store the set R because of its very large size, it is usual to work with a partial set R ′ that
is enriched iteratively by solving a subproblem. Secondly, the Set Partitioning formulation is
difficult to solve when R′ is small and it allows negative dual values which can be problematic
for the subproblem (a negative dual means there is a negative marginal cost to visit a node...).
This is why, in general, the following Set Covering formulation is used instead as a Master
Problem (M):

Le Gosier, Guadeloupe, June 13-18, 2004

TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis 3

min
∑

r∈R′

crxr (4)

s.t
∑

r∈R′

airxr ≥ 1 ∀i ∈ {1..N} (5)

x ≥ 0 (6)

1.1 Subproblem

To enrich R′, it is necessary to find new routes (x variables) that offer a better way to visit
the customers they contain, that is, routes with a negative reduced cost. The reduced cost
of a route is calculated by replacing the cost of an arc (the distance between two customers)
dij by the reduced cost of that arc cij = dij − λi, where λi is the dual value associated with
the covering constraint (5) of customer i. The dual value associated with a customer can
be interpreted as the marginal cost of visiting that customer in the current optimal solution
(given R′). The objective of the subproblem is then the identification of a negative reduced
cost path, i.e., a path for which the sum of the traveled distance is inferior to the sum of
the marginal costs (dual values). Such a path represents a new and better way to visit the
customers it serves (and a x variable with a negative reduced cost).

Here we give a brief description of the algorithm used to solve the subproblem. More infor-
mation on this algorithm can be found in Desrochers et al. [3] for example. The algorithm
is an extension of the classical Bellman’s algorithm. The principle is to associate with each
possible partial path a label and to extend these labels checking resource constraints until the
best feasible paths are obtained. Dominance rules are used to compare partial paths arriving
at a same location. But, unlike Bellman’s algorithm when no resources are considered, each
vertex of the graph can maintain a large number of labels since the comparison of two labels
takes account of their consumption level for each resource.

1.2 Search for Integer Solutions

The optimal solution of (M) has been identified when there exists no more negative reduced
cost path. This solution can however be fractional, since (M) is a relaxation of (S), and thus
does not represent the optimal solution of (S) but rather a lower bound on it. If this is the
case, it is necessary to start a branching scheme in order to identify an integer solution. More
information on this part of the column generation framework shall be provided in the complete
version of the paper.

2 New Acceleration Techniques

The contribution of this paper lies in the following improvements that were incorporated in
the subproblem solution algorithm. Note that contrary to usual implementations of column
generation for routing problems, we only consider elementary routes in R, that is routes where

Le Gosier, Guadeloupe, June 13-18, 2004

4 TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis

customers are never visited more than once. Details on this implementation can be found in
Feillet et al. [5]. But, although these techniques were implemented in the context of elementary
shortest paths, they all could be adapted to be used in a non-elementary context.

2.1 Limited Discrepancy Search

Limited Discrepancy Search (LDS), introduced by Harvey and Ginsberg [6], is a very well
known tree search method in Constraint Programming (CP). Given a heuristic that ranks all
the possible branches at a given node of a search arborescence, a discrepancy is a branching
decision that does not follow the heuristic recommendation. LDS trusts the heuristic by first
exploring the branches which corresponds to lowest discrepancy and by setting a limit on the
maximum number of discrepancy allowed. Limited Discrepancy Search is thus a very effective
technique which allows identifying rapidly good solutions by exploring the most promising
region of the solution space.

We embed the concept of LDS in Dynamic Programming (DP) to efficiently generate the most
promising paths of negative value. LDS is implemented by adding a label to every node which
indicates the number of discrepancies performed in order to generate that label. For each
node of the original VRPTW, we define a set of good neighbors and a set of bad neighbors
according to distances and time considerations. A discrepancy is then counted each time a
label is extended along an arc connecting a node to one of its bad neighbors. If the extension
of a label to a particular node causes the discrepancy level of that label to exceed the current
global maximum discrepancy level, the label is simply not extended.

By using LDS and by limiting the number of path that are added to R ′, the column generation
iterations are rapidly executed until almost no valid negative paths remain (a few iterations
before the process terminates). The maximum discrepancy level is progressively increased
when the subproblem fails to find new columns in order to ensure optimality.

2.2 Label Loading and Meta Extensions

The motivation behind these techniques is to use, when possible, the information about the
“good” paths that have been previously identified. Label Loading (LL) consists of adding a
set of labels to the graph before the DP search process is undertaken. This is very simple and
has presumably been implemented in other DP algorithm addressing similar problems. Our
implementation consists of selecting in R′ all routes r for which xr > 0, since these routes are
used in the optimal covering solution. We then traverse each of these routes while generating
the label associated with the visit of each node. All the labels thus generated are added to
the DP graph before we start looking for new routes.

The Meta Extension (ME) operator is used to obtain the complementary effect of Loading
Labels. While traversing each of the routes previously selected, we also add new metanodes to
the original graph. These metanodes correspond to the remaining path from their associated
original node to the destination depot. For instance, when traversing route Depot − A − B −
C−D−E−Depot, the metanode we associate with C is the equivalent (in cost and resources)
to the remaining subpath C − D − E − Depot. When a label l is extended to a metanode m,

Le Gosier, Guadeloupe, June 13-18, 2004

TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis 5

the path created by connecting of the segments from the l’s history and m’s subpath instantly
yields a complete path. Furthermore, the cost value and resource consumption of this new
path can be ontained in constant time, since all the necessary information was computed once
for each metanode at the moment of its creation.

These two techniques, when used together, allow to rapidly identify small variants of the best
routes in R′. Operators like node insertion, node deletion, and path crossing (connecting the
end of one route to the beginning of another) can be obtained with only a few label extensions.

2.3 Label Elimination

When the resource limits are not constraining, a very high number of labels can be generated
during the search for negative reduced costs paths. If we could determine which label can never
be extended to the final depot with a negative cost, we could probably eliminate a significant
proportion of these labels.

What we propose is to compute a very simple lower bound on the costs of all paths which
can be generated with a given label. This bound can be computed after each label extension
in order to establish whether the label can still yield a negative cost path. The bound has
to be chosen to balance the quality of the information it provides with the time it takes to
be computed. We are now experimenting with two knapsack bounds based on the capacity
and time resources. The linear relaxation of these knapsacks can be computed in linear time,
which is acceptable in the context of an Elementary Shortest Path algorithm since linear
computations are already performed after each label extension.

Preliminary results show that this technique can be very efficient in eliminating a large amount
of labels (sometimes over 50%) but the execution times tend to diminish only by a small factor.
However, we are still actively pursuing this research direction.

3 Experimental Results

We evaluated the performance of the techniques we have proposed on several different VRPTW
instances. But before looking at the figures from the experimental results we shall briefly
describe the instances used and our implementation of the column generation framework.

3.1 Benchmarks

We have tested the proposed method on the well-known Solomon instances [8]. The geograph-
ical data are randomly generated in problem sets R1, clustered in problem sets C1, and a
mix of random and clustered structures in problem sets RC1. The customer coordinates are
identical for all instances within one type (i.e., R, C and RC). The instances differ with respect
to the width of the time windows. Some have very tight time windows, while others have time
windows which are hardly constraining. Each instance contains 100 customers.

In the data sets, the distance matrix is not explicitly stated, but customer locations are given.

Le Gosier, Guadeloupe, June 13-18, 2004

6 TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis

Problem Nb Without Improvements With Improvements
Class Solved Avg Time Avg Iter. Avg Time Avg Iter

R1 9 137.2 36.9 46.2 86.7
C1 8 105.5 26.4 18.6 39.3

RC1 7 336.3 37.1 212.8 98.6
R2 3 590.7 66.3 162.3 149.0
C2 3 1615.6 135.6 150.1 102.0

RC2 4 507.1 66.0 144.3 151.0

Table 1: Iteration count and CPU time comparison over problems solved by both method.

Euclidean distances between these customers are calculated with one decimal point, to allow
comparison with other published methods.

3.2 Implementation of Column Generation

The column generation framework used to evaluate the proposed methods is quite straight-
forward since the Restricted Master Problem is the one described by (4)-(6). Columns are
generated using resource constrained elementary shortest path algorithm based on dynamic
programming (Feillet et al. [5]). At each iteration of the subproblem, the number of labels
extended with a negative cost to the destination node is limited to 500. The maximum allowed
time to find a solution was set to 3600 seconds.

The results reported here concern only the linear relaxation of the path based model of the
VRPTW as we are now working on completing the branch and price framework. Since the
accelerations we have proposed here concern the column generation process, the search for
integer solution should benefit from the same improvement as those observed during the lower
bound computation. As we should have completed the whole framework in a few months, we
intend to present results on the complete solution process at Tristan IV.

Computational experiments were carried out on a 2.8 GHz Pentium 4 with 1.5 Gb of RAM.
The Master Problem was modeled and solved with Cplex 7.5 leaving all parameters to their
default values. The overall process is stabilized with the techniques presented in [7].

3.3 Results and Discussion

In table 1 we compare the CPU time and the number of iterations needed to obtain the LP
bound of the Master Problem. Results are presented for two versions of the shortest path
algorithm, where the first one is the basic version described in [5] and the second one which
uses the proposed improvements. The average values are computed only on the problems that
could be solved by both versions in less than 3600 seconds. When using the improvements,
more iterations are needed to terminate the column generation process, but the CPU time is
significantly decreased. The benefits of these techniques thus seem to be considerable.

Furthermore, the proposed methods allow solving more problems within the one hour time

Le Gosier, Guadeloupe, June 13-18, 2004

TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis 7

Problem LP bound CPU Time Iterations

r104 956.973 858.7 168
r108 913.524 1553.7 133
r112 926.716 1403.4 144
rc104 1101.810 1983.3 132
r206 866.868 2202.5 146
r209 841.402 591.8 176
r210 889.370 3425.0 206
c202 589.100 2078.8 88
c207 585.8 184.7 91
c208 585.8 100.6 75
rc207 947.313 2080.3 179

Table 2: Bounds obtained with refined algorithm only

limit. Table 2 reports the problems that were solved only with the improved shortest path
algorithm. Out of the 56 test instances, we could not identify the elementary lower bound of
1 problem in the first class of instances and 10 problems in the seconde one.

4 Conclusion

We have presented three techniques which accelerate dynamic programming algorithm ad-
dressing the Shortest Path Problem with Resource Constraint in a column generation context.
The Limited Discrepancy Search allows to rapidly execute the first iterations of column gener-
ation and to concentrate the effort on the last iterations. Label Loading and Meta Extension
are simple techniques which allow transforming the traditional label extension procedure into
more powerful local search operators. Finally by computing a lower bound after each extension
we are able to identify and remove a large number of labels which can be proved worthless.

This project is subject to ongoing research as we are now building and testing the global
branch and price algorithm that will enable the identification of integer (and thus feasible)
solution to the VRPTW. Since column generation is performed throughout the branch and
price, the methods presented here will be extremely useful in building an efficient framework.

References

[1] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance.
Branch-and-Price: Column Generation for Huge Integer Programs. Operations Research,
46:316–329, 1998.

[2] G.B. Dantzig and P. Wolfe. Decomposition principles for linear programs. Operations
Research, 8:101–111, 1960.

Le Gosier, Guadeloupe, June 13-18, 2004

8 TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis

[3] M. Desrochers, J. Desrosiers, and M.M. Solomon. A New Optimisation Algorithm for the
Vehicle Routing Problem with Time Windows. Operations Research, 40:342–354, 1992.

[4] J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time Constrained Routing
and Scheduling. In M.O. Ball, T.L. Magnanti, C.L. Monma, and Nemhauser G.L., editors,
Network Routing, volume 8 of Handbooks in Operations Research and Management Science,
pages 35–139. North-Holland, Amsterdam, 1995.

[5] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the elemen-
tary shortest path problem with resource constraints: Application to some vehicle routing
problems. Technical report, Laboratoire Informatique d’Avignon, 2003.

[6] W. Harvey and M. Ginsberg. Limited Discrepancy Search. In Proc. of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-95), pages 607–615, Montréal,
Canada, 1995. Morgan Kaufmann.

[7] L.-M. Rousseau, M. Gendreau, and D. Feillet. Interior Point Stabilization for Column
Generation. Technical report, Centre de recherche sur les transports, 2003.

[8] M. M. Solomon. Algorithms for the Vehicle Routing and Scheduling Problem with Time
Window Constraints. Operations Research, 35:254–265, 1987.

Le Gosier, Guadeloupe, June 13-18, 2004

