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Abstract

In this study we present a model and an algorithm for solving the car distribution
problem in railway networks. The problem consists of assigning empty cars to customers
that are located at different points of the network. The operation is usually planned
over a period of several weeks. The problem has to be solved in the presence of multiple
information processes with lags between when information becomes known (the phone
call) and when it becomes actionable (the car or order is available to be moved). These
information processes include both the quantity of cars and orders, but also their attributes
(the suitability of the car for a shipper, the destination of an order), and the times required
to complete an action. We report computational results of a real case study where the
model has been used to solve the problem in a major North American rail road company.

Introduction

The management of empty cars represents one of the basic operations in rail transportation.
The main objective consists of covering as many customer demands as possible with empty
cars while trying to minimize empty transportation costs and penalties for late service of an
order. Railroads must solve this problem in the presence of considerable uncertainty. Most
models formulate the problem by either ignoring uncertain events (such as forecasted cars or
orders), or treating them deterministically. Several authors have proposed stochastic models
which primarily focus on uncertainty in the future customer demands.

This paper is based on an actual project modeling empty car distribution for a major railroad.
During this project, it became clear that in addition to uncertainty, there are multiple infor-
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mation streams as well as lagged information processes. Examples of the multiple information
streams include:

• Car supplies - Cars become available from other railroads.

• Car acceptability - A railroad may move a car to a customer, only to learn that the
customer has rejected the car as being unacceptable (dirty, maintenance problems).

• Customer orders - Customers typically make their orders known the previous week,
although typically late in the week. The car order consists only of the number of cars
required and the preferred type.

• Load times - The time required to load a car is not known until the car is loaded and
released back to the railroad.

• Order destinations - The destination of an order does not become known until the car is
loaded.

• Transit times - The time required to complete a trip is not known until after the trip is
finished.

In addition, there are a number of lagged information processes, which arise when there is a
difference between when the information is available and when the action actually occurs. The
most obvious instance of a lag is the difference between when a customer places an order for a
car and when the order has to be served. Other examples are departures of cars - we know at
the time of the departure when the car will be available. This second example also highlights
that lags can be random. A third example is empty car supplies from other railroads. A
railroad can “see” that an empty car on one railroad is headed inbound and will show up on
the home railroad at some point in the future.

In addition to the multiple, lagged information processes, the car distribution problem has to
respect a variety of business rules:

• The demands of each customer need to be covered from a specified preference list of car
types. Some substitution is allowed, but it depends on each individual customer.

• Empty cars can only be stored at primary storage yards.

• Empty car movements are allowed only between certain yards.

• When a car first becomes empty at a customer it must be moved to an allowable storage
facility.

• An order that should be served on Tuesday may be served later the same week, but the
order may not be held over to the subsequent week.

The focus of our project was to optimize the flows of cars over a three week horizon to support
tactical planning activities. Figure 1(a) depicts the time-space representation of the problem.
The planners want the results of the model to forecast shortages (orders that the railroad will

Le Gosier, Guadeloupe, June 13-18, 2004



TRISTAN V: The Fifth Triennal Symposium on Transportation Analysis 3

Time

���
���
���
���

������

������
������

Monday

Legend:

Yard D

Yard E

Yard C

Yard B

Yard A

Space

Tuesday Wednesday Thursday Friday

: Car of type 1

: Car of type 3
: Car of type 2

: Car of type 1 projected
to be available in future

: Order of type 1
: Order of type 2
: Order of type 3

: Car holding
: Car assignment
: Loaded car movement

(a) Time-space representation of the problem.
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Figure 1: Graph representations of the problem.

not be able to cover), perform “what-if” analyses to determine the value of additional cars or
the number of cars that can be stored, and plan the flows of empties.

In the following sections we briefly describe the existing solution approaches and the methodol-
ogy as well as the algorithmic approach that we use in this study to solve the car distribution
problem. Then, we present some computational results for a real case where the model is
applied to solve the problem of one of the North American railroads. We finally conclude with
some possible extensions of the model and future research avenues.

1 Solution approaches and description of the model

We propose a solution approach using approximate dynamic programming where the value of
cars in the future are approximated using separable, piecewise linear functions. The strategy
builds on prior work applying this strategy for fleet management (see, for example, Godfrey
Powell 2002, and Powell and Topaloglu 2003). This prior work considered randomness only
in the number of orders being placed, not their attributes. These are critical assumptions, as
they allowed the construction of nonlinear value functions that depended on the destination
of an order and the time of arrival. In our model, this information is not available.

The solution approach consists of an iterative process that can be described as follows. We
discretize the simulation horizon into T equal time periods [0, . . . , T ]. At each iteration n, we
solve a sequence of subproblems {qn

t }
T
t=0 where the subproblem qn

t of time step t is similar to
the one illustrated by Figure 1(b). To describe the way the subproblems {qn

t } are constructed
and the dynamics of resource and information flows within and between these subproblems,
we need to introduce the following notation.

CR: Set of resource classes. We have two classes of resources: car and oder.

a: Vector of attributes which describe the state of a resource. In our problem, each car has
three basic attributes: type, current location and the actionable (available) time. On
the other hand, each order has four basic attributes: origin, destination, the actionable
(available) time and the list of preferred car types that can be used to cover the order.
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Ac: Space of possible outcomes of different vectors of attributes in class c ∈ CR.

In the car distribution problem, each order can be satisfied partially and at different times.
This allows us to split each order into multiple identical orders where each requires only one
car. We use the following notation for the number of resources at different time steps of an
iteration n:

R̂
c,n

tt′a
: The number of exogenous resources (just entered the system) at iteration n in class

c ∈ CR with attribute a that we know about at time t and are actionable at time t′ ≥ t.

R̂
c,n

tt′ : (Rc,n

t,t′a)a∈Ac .

R̂n
t : (R̂c,n

tt′
)t′≥t,c∈CR .

R
c,n

tt′a
: The number of endogenous resources (already in the system) in class c ∈ CR with at-

tribute a that we know about at time t and are actionable at time t′ ≥ t.

R
c,n

tt′
: (Rc,n

ta )a∈Ac .

Rn
t : (Rc,n

tt′
)t′≥t,c∈CR .

The number of resources R
c,n

tt′a
are obtained from three different sources: the resources that are

actionable in time t′ ≥ t and we already know about them at time t′′ < t, the resources that
are actionable in time t′ ≥ t and we just know about them at time t, and the new exogenous
resources that just became knowable at time t and are actionable in time t′ ≥ t. The exogenous
resources can also be classified into deterministic and stochastic. To formally write the flow
interactions, we define:

ωn: The realization of all information arriving all time periods at iteration n, i.e.,
ωn = (ωn

1 , . . . , ωn
T ), where ωn

t is the information arriving during [t, t + 1).

Ω: Set of all possible sample information realizations (Ω = {ω}).

d: A type of decision that acts on a resource or a class of resources. In our problem,
d can be assign a car to an order, hold a car or an order to the next time step,
move empty a car to a storage facility.

D: The set of possible decisions just enumerated.

xn
tad: The quantity of resources with attribute a acted on with a decision d ∈ D at

iteration n at time t.

xn
t : (xn

tad)a∈A,d∈D.

xn: {xn
t }t∈[0,...,T ].

Mt(a, d, ωn): The transition function that models the outcome of a decision d acting on a
resource with an attribute vector a at time t requiring time τ to complete and
produce a resource with an attribute vector a′ at time t+ τ , i.e., Mt(a, d, ωn) =
(a′, τ). The information ωn would contain, for example, the information about
the order destination after assigning a car to it.
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It is important to note that the assign decision includes at most five sub-decisions: move empty

to the order location if the car is not at the order location, hold the car or the order if the car
arrives before or after the order actionable time, load the car, move loaded car to the order
destination, and unload the car at the destination. The actionable time and the location of
the car at the end of an assign decision are stochastic and are unknown when the decision is
made since both the travel times and the order destination are not known in advance. Figure 2
illustrates the arrival of new information needed to implement an assign decision over time.

Information:

t t ta c

TimeMove to order time Unloading
timeMove loaded timeTime

tb d t et f Time

LoadingHolding

Order to cover Order destination Car actional time

Figure 2: Information arrivals during the implementation of an assign decision.

In the iterative process, the resource quantities that we know about at time step t and are
actionable at t′ ≥ t are viewed as a function of the information (ωn

0 , . . . , ωn
t−1) collected so far

before time t. At time step 0, all prior information is captured by the state variable R0.

After solving a subproblem qn
t , the resource quantities that we know about at t + 1 that will

be actionable at time t′ ≥ t + 1 are computed as follows:

Rn
t+1,t′a′(ωn) = Rn

tt′a(ω
n) + R̂n

t+1,t′a(ω
n) +

∑

a∈A

∑

d∈D

δt′a′(a, d, ωn)xn
tad, ∀ t′ ≥ t + 1, (1)

where δt′a′(a, d, ωn) is an indicator function defined as follows:

δt′a′(a, d, ωn) =

{

1, if M(a, d, ωn) = (a′, t′ − t),

0, Otherwise.
(2)

Note that the last term of Equation (1) computes the quantity of resources that we acted on at
time step t after the implementation of xn

t that will actionable at a future time step t′ ≥ t+1.
This information becomes knowable after the implementation of the solution xn

t .

The supplies of subproblem qn
t are cars that we know about at time t that will be actionable

at time t′ ≥ t and are given by R
car,n

tt′a (ωn). Similarly, the demands of qn
t are the orders that

we know about at time t that will be actionable at time t′ ≥ t and are given by R
order,n

tt′a
(ωn).

For computational reasons, we can include in qn
t only the resources that are actionable in the

near future by limiting the time t′ to be the interval [t, . . . ,min(t + T ph, T )], where T ph is a
time parameter that we name the planning horizon.

When the outcome of a decision is deterministic, an effective approximation is to solve sub-
problems of the form:

max
xt

∑

a∈A

∑

d∈D

ctadxtad +
∑

a′∈A

V̄ n−1
ta′ (Rt+1,a′(xt)) (3)

where:

Rt+1,a′(xt) =
∑

a∈A

∑

d∈D

δa′xtad (4)
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Equation (3) uses a separable value function approximation (VFA) which we represent as
V̄ n−1

ta′ (Rt+1(xt)). In our research, we show how to modify this approximation to handle uncer-
tainty in the modify function. Instead of a function indexed by the outcome a ′, we use a value
function indexed by the attributes that we know when we make a decision. For example, when
we assign a car to move an order but do not know the destination of the order, we index the
value function by the origin of the order.

Algorithm 1 summarizes the solution approach described in this section for the car distribution
problem. In Algorithm 1, V̂ n

t denotes the set of newly constructed car VFAs when solving
qn
t , V̄ denotes the set of all VFAs, and In

t denotes the information collected after solving qn
t

that is required to update the elements of V̄ .

Algorithm 1 Solution algorithm

1: n← 1, V̄ ← ∅, stop ← false
2: while stop is false do

3: xn ← ∅, In ← ∅
4: Sample ωn {here, we sample the quantities of stochastic exogenous resources for the all

time periods and we add them with the deterministic resources to the system. We also
sample the destination of each order. This information will be used only after a car
assignment is made and the car is ready to move to the order destination}

5: Rn
0t′ ← R̂n

0t′

6: for t← 0 to T do

7: Construct subproblem qn
t where supplies and demands are obtained by Rn

tt′(ω
n)

8: Solve qn
t , i.e., find xn

t

9: Implement xn
t {here, we compute Rn

t+1,t′(ω
n) using Equation (1)}

10: Collect V̂ n
t and In

t {I
n
t are usually the gradients collected after solving qn

t }
11: xn ← xn ∪ xn

t , In ← In ∪ In
t , V̄ ← V̄ ∪ V̂ n

t

12: end for

13: Update each element of V̄ using In {smooth the VFAs using a step size α ∈ (0, 1]}
14: if the stopping criterion is met then

15: stop ← true, the “optimal” solution is xn

16: else

17: n← n + 1
18: end if

19: end while

2 Computational results

The algorithm described in the previous section has been implemented in Java and used in a
deterministic mode (car supplies, order demands and order destinations are known in advance)
to solve the car distribution problem of a major railroad. The company has a fleet of about
1800 cars of 11 types spread over 208 yards. The car assignment operation is done over a three
week simulation horizon where a total demand of 4600 empty cars of different types need to
be satisfied. The decision horizon has been set to one day and the planning horizon to four
days. Two datasets of the same simulation period have been considered. The first used orders
from history, and the second used forecasted orders.
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Figure 3: Model results compared to history.

The historical run produced a fill order rate (the percent of demands that were covered) of
100 percent in all iterations. The empty car days per moved order from the model using the
historical dataset divided by the empty car days from history over the iterations are given in
Figure 3(a). Notice the steady improvement of the empty car days over the first 40 iterations to
reach a steady level which is low compared to history. In the run on forecasted data, the model
outperformed history for both the fill order rate and the empty car days (see Figures 3(b)-
3(c)). However, the improvement is more noticeable for the fill order rate where the model
moves about 48 percent more cars than in history.

In our presentation, we will present results of experiments where both the number of orders
and their attributes are random. We believe this is the first formulation of a stochastic fleet
management problem which exhibits randomness not only in the quantities of orders, but also
their attributes.
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