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Abstract

In this paper we present an exact algorithm for the Windy Rural Postman Problem.
This problem generalizes many important Arc Routing Problems, and also has some in-
teresting real-life applications. The Branch & Cut method presented here has been tested
over sets of instances of large size.

1 Introduction

The problem addressed in this paper, the Windy Rural Postman Problem (WRPP), can be
described as follows. Let G = (V,E) be an undirected graph with two costs cij and cji

associated to each edge (i, j) ∈ E. The first one represents the cost of traversing this edge
from vertex i to vertex j, while the second one represents the cost of the traversal in the
opposite direction. Let ER be a subset of edges, which will be called required edges. These
ones will be the edges that must be obligatorily traversed by the solution. So the WRPP
consists of finding a tour of minimum cost that traverses each required edge at least once.

The WRPP generalizes many well known Arc Routing Problems. If ER = E, it reduces to
the Windy Postman Problem (WPP), presented in [12] and studied in [15], [16], [10] and [14].
When cij = cji for all edges, we have the Rural Postman Problem (RPP). If both conditions
are present, the problem reduces to the Chinese Postman Problem. Also, versions of these
problems on directed and mixed graphs can be found as particular cases of the WRPP.

The WRPP is also interesting because it is the optimization model describing some real-life
situations. Let us take, for example, the case of some climbing robots designed to inspect
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complex 3-dimensional structures, such as bridges. They carry a limited battery, so their
routes must be carefully designed in order to consume as less energy as possible. These robots
are remotely controlled and are equipped with TV-cameras to inspect the structure in such a
way any possible crack in the bridge beams, for example, can be detected. All beams must
be inspected, so they can be represented by required edges. Some special movements must
also be performed by the robots in order to move from the end of a beam to the beginning
of another one or to another side of the same beam. These would be the non-required edges.
Since, for example, the energy consumed by the robot is not the same if the movement is
upwards or downwards, the cost of traversing each edge can be different for each direction. So
the problem can be formulated as a WRPP.

Some heuristic algorithms and a cutting-plane procedure producing good lower bounds have
been introduced in [1]. Also, metaheuristic approaches can be found in [2], particularly Multi-
Start and Scatter Search algorithms. A detailed description of the WRPP polyhedron, as well
as some new facet-defining inequalities are presented in [6] and [7]. To our knowledge, the
algorithm presented here is the first exact procedure proposed for the WRPP.

In what follows, the notation that will be used along this paper and a linear integer formulation
for the WRPP will be introduced, as well as some other families of facet inducing inequalities
that will be used in our Branch & Cut (B&C) algorithm. Finally, some details of our B&C
implementation and the computational results obtained on different sets of instances, including
some of large size, will be presented.

2 Notation and WRPP formulation

For the sake of simplicity and without loss of generality, we will assume that every vertex in
V is incident with at least one required edge. Given an undirected graph G = (V,E) and a
subset of required edges ER ⊂ E, δ(i) and δ(S) will denote the sets of edges incident with
vertex i and with vertices in S, respectively, while δR(i) = δ(i) ∩ ER and δR(S) = δ(S) ∩ ER.

Let GR be the graph induced by ER. This graph is, in general, non connected, so we will call
R-sets, and represent them by V1, V2, . . . Vp, to the sets of vertices associated to the connected
components of GR. A set of vertices S for which |δR(S)| is odd will be called R-odd set, and
δ(S) will be an R-odd cutset.

Let us represent by xij (xji) the number of times that a solution x traverses edge (i, j) from i

to j (from j to i). Then, the WRPP can be formulated ([1]) as follows:

Min
∑

(i,j)∈E

cijxij + cjixji (1)

s.t. : xij + xji ≥ 1 ∀(i, j) ∈ ER (2)
∑

(i,j)∈δ(i)

(xij − xji) = 0 ∀i ∈ V (3)

∑

i∈S,j∈V \S

xij ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (4)
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xij, xji ≥ 0 ∀(i, j) ∈ E (5)

xij , xji integer ∀(i, j) ∈ E (6)

Inequalities (2) assure that each required edge is traversed at least once by the solution. Flow
conservation equations (3) state that the number of times that a solution enters a vertex must
be equal to the number of times it goes out from it. Finally, inequalities (4) are the connectivity

constraints, also called subtour elimination constraints.

It can be shown that, under mild conditions, inequalities (2) and (5) induce facets of the
WRPP polyhedron. The following families of inequalities also induce facets of the WRPP
polyhedron (see [6]).

• R-odd cut inequalities: these inequalities were introduced in [8] for the RPP.

• K-Component or K-C inequalities: also presented in [8]. A variation on these inequal-
ities, called K-C02 inequalities, are also used.

• Honeycomb or HC inequalities: they are a generalization of K-C inequalities, and
were first presented in [9] for the General Routing Problem (GRP). HC02 inequalities
are another variation on the HC inequalities that are used.

• Path-Bridge or PB inequalities: a different generalization of K-C inequalities. They
were introduced in [11] for the GRP.

• Zigzag or Z inequalities: this is a new family of facet-inducing inequalities, and its
detailed description can be found in [7].

3 Branch & Cut algorithm

In this section we present some details on our implementation of the B&C method. B&C
algorithms were first introduced by Padberg and Rinaldi [13], and have shown to be among the
most efficient methods to solve NP-hard problems to optimality. Basically, a B&C algorithm
consists of a cutting-plane procedure working at the nodes of a Branch & Bound tree. At each
node, facet-defining inequalities that are violated by the current LP solution are identified by
the separation algorithms.

In our B&C algorithm, the initial LP at the root node is defined by constraints (2), (3), (5),
one connectivity constraint (4) for each R-set and one R-odd cut inequality for each R-odd
vertex. Note that, even in the case that an integer solution is found, it may be unfeasible.
An exact method must then be applied in order to find if there is any connectivity constraint
violated by this solution.

In the cutting-plane procedure, we have used exact separation algorithms for connectivity and
R-odd cut constraints identification. We have also used heuristics for separating them, as well
as for separating all other types of inequalities presented before. Except for the separation
of Zigzag inequalities, which algorithm was designed specifically for this problem, the other
separation problems were solved by means of algorithms that were adapted from previously
existing algorithms for other Arc Routing Problems ([4], [5]).
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In each iteration of the cutting-plane procedure, the separation algorithms are invoked as
follows:

1. Connectivity and R-odd cut heuristics.

2. Exact connectivity separation if the heuristics failed.

3. Exact R-odd cut separation if the heuristics failed.

4. If the number of violated constraints found so far is at least 10, stop.

5. Zigzag, K-C and K-C02 heuristics.

6. If the number of violated constraints found so far is at least 10, stop.

7. HC and HC02 heuristics.

8. If the number of violated constraints found so far is at least 15, stop.

9. PB heuristics.

The procedure applies until no new violated inequalities are found or a tailing-off criterium is
met.

In our B&C algorithm we use inequalities to perform branching. Let x∗ be the Lp solution
at a given node of the branching tree. Let S be the set of vertices of a R-set such that
2k < x∗(δ(S)) < 2k + 2. Since x(δ(S)) should be an even number for every WRPP tour x, we
can split the tours into those that satisfy x∗(δ(S)) ≤ 2k and those satisfying x∗(δ(S)) ≥ 2k+2.
This is done by adding the appropriate inequality to the current Lp. This is the strategy used
in [3]. When no such a subset S is found, the branching is done on the “most non integer”
variable.

For very large instances, the number of inequalities that are found during the exploration of
the B&C tree is so big that, in some cases, the computer may not be able to find the optimal
solution due to memory limitations, and very often computing time increases because of this
problem. It is then important to find a way to store constraints that uses as less memory
as possible. Using flow conservation equations (3), connectivity, R-odd cut, K-C and K-C02

inequalities can be transformed so that the number of non zero coefficients reduces to half
of them in their original form. Furthermore, during its execution, our algorithm adds to the
formulation a large number of R-odd cut inequalities, many of which are very similar to each
other. While they use a lot of memory, the presence of inequalities that are so similar does not
seem to prove of much value to the effectiveness of the algorithm. For this reason only a small
number of the R-odd cut constraints that are identified by the exact separation algorithm are
added.

In order to avoid that the separation algorithms spend too much time at each node of the
B&C tree, we have implemented a tailing-off strategy. After each 5 consecutive iterations of
all the separation algorithms at the same node of the tree, if the total increase of the value of
the objective function during these 5 iterations is less than 0.01%, a branching step is done
and the actual node is no longer explored.
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Time Nodes R-odd Conn. K-C HC PB Z Total

Albaida 0.62 4.86 81.51 17.33 26.54 6.87 1.03 1.93 135.22

Madrigueras 8.71 21.29 280.03 17.51 36.20 6.45 1.31 3.94 345.43

A500 68.72 49.19 628.19 24.81 13.00 0.71 1.07 2.59 670.37

Table 1: Computational results

4 Computational results

The present B&C algorithm has been implemented in C/C++ using CPLEX 9.0 Concert
Technology, and compiled with MS Visual C++.NET. The following tests were run on a
Pentium IV at 1.7Ghz, with 512Mb RAM. The algorithm has been tested on a total set of 120
randomly generated instances with the following characteristics:

• A set Albaida of 72 instances with 116 vertices, 174 edges and from 7 to 33 R-sets.
These instances are based on the real street network of Albaida (Valencia). Details on
the generation of these instances can be found on [1].

• A set Madrigueras with 72 instances with 196 vertices, 316 edges and from 5 to 47 R-sets.
They are also based on a real street network (see [1]).

• A set A500 of 24 instances with 265 to 488 vertices, from 842 to 1719 edges and between
1 and 76 R-sets. A detailed description on how they were generated can be found in [2].

Table 1 contains the results obtained on these sets of instances. It shows the average time
(in seconds) needed to optimally solve the instances of each set, the average number of nodes
explored in the B&C tree, and the average number of cuts of each type identified by the sepa-
ration algorithms. Column labelled K-C (HC) shows the number of K-C and K-C02 (HC and
HC02) constraints found, and the last column presents the total number of violated inequalities
identified.

Acknowledgments: Authors thank the support given by the Ministerio de Ciencia y Tec-
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