
TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis 1

A Multi-source Shortest Path Algorithm

Raffaele Cerulli* Stefano Pallottino†

*Department of Mathematics and Computer Science

University of Salerno
P.te Don Melillo, 84084, Fiscianop (SA) Italy

raffaele@unisa.it

†Department of Computer Science
Unicersity of Pisa

Via F. Buonarroti, 2 – 56127, Pisa, Italy
pallo@di.unipi.it

1 Introduction

In many transportation problems, it is necessary to compute many times shortest paths among
particular nodes (denoted in general as centroids) in a directed and weighted graph G = (N, A, c),
where n = |N| is the number of nodes, m = |A| is the number of arcs, and cij denotes the cost of arc
(i,j) ∈ A. By R we denote the set of centroids, of cardinality k = |R|.

The k to k shortest path problem, which we call for short as “k2sp” problem, can be solved by
working out k “shortest path tree” problems, one for each centroid either as origin or as
destination of the paths [1]. An alternative approach to solve k2sp problem, especially when k =
O(n), is to solve the “all pairs shortest path” problem, which requires to handle an n-order matrix
of distances [5]. This memory requirement, in general, prevents to use such a kind of approach
since the current size of transportation networks reaches thousands of nodes and arcs (for some
problems the size of the network can reach million of nodes).

Another approach proposed in literature is based on the reoptimization approach, where one can
exploit the optimal tree found for the i-th centroid to compute the shortest path tree of the i+1-th
centroid [4, 6, 8].

Le Gosier, Guadeloupe, June 13–18, 2004

2 TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis

In this paper we aim to show how it is convenient to simultaneously compute k shortest path trees
(or a portion of them in case of lack of memory), by proposing a general approach, which we call
multisource, that combines simplicity of the algorithm with its efficiency. The first experimental
results obtained show how promising the multisource approach is, and suggest to deeply
investigate the multisource shortest path algorithms efficiency to provide a powerful tool for
transportation models and software. In fact, in principle, it is possible to generalize any existent
shortest path tree algorithm to a similar multisource algorithm.

2 The Problem

Let r ∈ R be a centroid, which will be the root of the finding shortest path tree, formed by paths
having r as origin (the case in which r is the path destination can be symmetrically stated); the
shortest path tree problem with root r can be written as a Linear Programming flow problem:

(Pr) Min ∑
∈Aji

ijij xc
),(

 i
iFSji
ij

iBSij
ji bxx =− ∑∑

∈∈)(),()(),(
 Ni ∈∀

 0≥ijx () Aji ∈∀ ,

where () (){ }iuAvuiFS =∈= :, and () (){ }ivAvuiBS =∈= :, denote the forward star and the

backward star of i ∈ N, respectively; where the right hand side has values b and

 and the arc flow x , when positive, gives the number of nodes in the subtree

having j as root.

,1+−= nr

,ri ≠∀,1bi = ij

The dual problem of (Pr) is

(Dr) Max () ∑
≠

+−
rj

jrn ππ1

 ijij c≤−ππ () Aji ∈∀ ,

Le Gosier, Guadeloupe, June 13–18, 2004

TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis 3

where iπ denotes the dual variable associated with i ∈ N, usually referred to as the potential of i.

The dual constraints correspond to the so called Bellman conditions when a label array d is used
as an estimation of the potential array:

 jiji dcd ≤+ () Aji ∈∀ , (1)

To solve the k2-sp problem we have to solve the collection of k pairs (Pr) and (Dr) problems, one
for each root r ∈ R.

As far as the solution of a single pair (Pr) and (Dr) for a given r ∈ R is concerned, the iterative part
of any generic (primal) shortest path tree algorithm is depicted in figure 1. Q is the set of
candidate nodes formed by all the nodes whose forward star may contain arcs violating the
Bellman conditions (1). Moreover, pj denotes the predecessor node of j, that is the node which
precedes j in the current tree, for each j ∈ N. For more details see [1, 7].

repeat
 select and extract i from
Q;
 foreach (i,j) ∈ FS(i) do
 if di + cij < dj then
 dj ← di + cij
 pj ← i
 if j ∉ Q then insert j
into Q
until Q = ∅;

Figure 1. The iterative part of a generic algorithm for a single problem

3 The multi-source approach

Let us suppose that we have enough memory to handle all the k shortest path trees; that is we have
enough memory of order O(kn). In case of insufficient available memory, a subset of trees is
simultaneously treated and the sequencing of trees to treat will be explained afterwards.

By dr

i and pr
i we denote the label and the predecessor of node i ∈ N, respectively, while by Qr we

Le Gosier, Guadeloupe, June 13–18, 2004

4 TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis

denote the set of candidate nodes, all relative to the root r ∈ R. Among the k roots, one of them,
which we will denote from now as r, is chosen as the leader root, while the others roots s ∈ R \ {r}
are denoted as the active ones.

The basic idea is to apply a classical primal algorithm for the tree rooted at r and, each time a node
i is extracted from Qr, the algorithm simultaneously checks the Bellman conditions for all arcs
(i,j) ∈ FS(i) to all active roots s such that i ∈ Qs, as shown in figure 2.

The leader root r obviously belongs to R(i), so node i is removed from all the sets of candidate
nodes. At the end of the iterative part, that is when Qr = ∅, an active root is designed as new leader
r, and the iterative part is repeated for that new leader. The multisource algorithm ends when all
the roots have been treated as leader.

The advantage of such an approach resides in starting to work on a new leader root with a set of
labels whose values are closer to the optimal values than the initial +∞ values. The more
important advantage is due to a better handling of the input data. In fact, once obtained the current
node i, the selection from the memory of the data relative to FS(i) requires a significant time of
accessing to the graph data structures, which can be higher than the repeated checking of the
Bellman conditions of arcs (i,j) ∈ FS(i) for the active roots belonging to R(i).

repeat
select i from Qr;
set R(i) = {s ∈ R: i ∈ Qs};
foreach s ∈ R(i) do extract i from Qs;
foreach (i,j) ∈ FS(i) do
 foreach s ∈ R(i) do
 if ds

i + cij < ds
j then

 ds
j ← ds

i + cij
 ps

j ← i
 if j ∉ Qs then insert j into Qs
until Qr = ∅;

Figure 2. The iterative part of a generic multisource algorithm

To implement a multisource algorithm some choices must be made:
• to define the order of roots to become leader;
• which type of classical algorithm is adopted for the leader root;
• how to implement the collection of sets of candidate nodes;
• in case of lack of memory, how to separate the active roots from the “not already activated”

Le Gosier, Guadeloupe, June 13–18, 2004

TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis 5

ones, and how to activate them.

In the paper we will propose various solutions to the above points and we will investigate the
more effective choices.

4 A particular multisource implementation and its performance

In this section we want to analyze the first experimental results for a very simple implementation
of multisource. In particular:
• we use the increasing order of integer numbers as the roots order;
• we use, for the leader root, the algorithm Dijkstra with the 4heap [2];
• we implement a k×n bit-array B to describe the sets of candidate nodes for the active roots:

B[s,i] = 1 if i ∈ Qs, and 0 otherwise, for each s ∈ R \ {r} and for each i ∈ N;
• we restrict the test graph size to treat all the roots simultaneously.

In the following we will call MS-D4h the implemented algorithm and we will compare its
performance versus its twin algorithm D4h, that is the classical Dijkstra algorithm with a 4heap as
a priority queue [2, 3].

In table 1 we report the results obtained for a complete graph with n=3000 nodes (and almost 9
million of arcs), and with arc costs uniformly generated in the interval [1, 10000]. We vary the
number of roots (randomly chosen) from 10% to 100% of the nodes.

For the tests we used a PC AMD Athlon Thunderbird 1.2 GHz, 512 MB Dimm Sdram PC133
with Suse Linux 8.2. The algorithms have been coded in C language and compiled with gcc
ver.3.3 with option “-o4”.

The c.p.u. times reported are relative to the computational part only, that is the time to read the
graph and to write the results is not computed.

Column 2 reports the global number of node extractions from the set of candidate nodes Q for the
algorithm D4h. In column 3 there is the global number of node extractions from the various Qr for
the algorithm MS-D4h when r is the leader root, while in columns 4 it is reported the global
number of forward stars analyzed. Columns 5 and 6 give the total running time in seconds. Finally,
the last column gives the rate of the running time saving obtained with the multisource approach.

Le Gosier, Guadeloupe, June 13–18, 2004

6 TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis

For both algorithms we stop the single root calculation only when the set of candidate nodes is
empty; while, it is well known that, when the Dijkstra approach is used for a graph with
non-negative arc costs, it is possible to stop the computation once the last centroid is extracted
from Q.

Table 1: Experimental results
Roots
% n

Heap Extr
D4h

Heap
Extr
MS-D4h

FS analyz.
MS-D4h

TIME
D4h

TIME
MS-D4h

% SPEED
UP

10 900,000 12,848 1,606,665 128.78 119.13 8.10 %
20 1,800,000 13,317 3,226,702 257.75 229.35 12.36 %
30 2,700,000 13,527 4,841,978 386.58 351.73 9.89 %
40 3,600,000 13,637 6,442,847 515.52 445.65 15.72 %
50 4,500,000 13,724 8,063,571 644.32 555.42 16.00 %
60 5,400,000 13,802 9,680,413 773.20 658.28 17.45 %
70 6,300,000 13,842 11,304,479 902.08 778.78 15.83 %
80 7,200,000 13,926 12,913,818 1,030.97 882.10 16.87 %
90 8,100,000 14,056 14,528,160 1,159.88 1,000.68 15.90 %
100 9,000,000 14,077 16,156,401 1,288.80 1,109.45 16.16 %

The preliminary results are very promising. They show that the multisource approach is effective.
This is mainly due to the number of accesses to the graph structure to select the nodes forward
stars. In fact, in the case of 100% of nodes playing the role of roots, the number of accesses
decreases from 9 millions to few thousands, see columns 2 and 3. The saving due to that
drastically reduced number of accesses to the graph structure compensates the overhead due to the
higher number of scans of the forward stars, see column 4, since only the leader root computation
follows the Dijkstra’s ordering of nodes selection.

Indeed, if the node label ds

j, of a node j related to a root s, reaches the optimum value before that s
becomes the leader root, then there is no need of using heap insertion, successive extraction and
forward star analysis for node j for that root.

In case of lack of memory, two approaches are possible:

• refreshing: every time that the computation for the leader root is completed, a new root is
activated and stored in place of the leader root, and another root is selected as leader;

• paging: all the active roots are processed, without substitutions. Once completed the
computation for all of them, an equal number of new roots is activated, and one of them is
selected as leader.

Le Gosier, Guadeloupe, June 13–18, 2004

TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis 7

5 Conclusions

The preliminary experimental results suggest to perform a wide experimentation of the
multisource approach, both by increasing the number of graph tests (with different structure and
dimension) and by producing different versions of multisource.

In fact, to each classical shortest path algorithm, a multisource counterpart can be paired; this
allows to deeply investigate which type of data structures will result more effective to exploit the
multisource approach.

The presentation at the Conference will be devoted to the analysis of the experimentation.

After a couple of days this extended abstract was concluded, Prof. Stefano Pallottino suddenly
died.
I want to dedicate this paper to his memory to express my gratitude for all the time spent working
together.

References

[1] R. K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms and
Applications, Prentice-Hall Englewood Cliffs, NJ, 1993.

[2] F. Carrabs and R. Cerulli, The Shortest Path Problem: Algorithm and Data Structures,
University of Salerno, Department of Mathematics and Computer Science, Tech. Rept. N. 16,
2003.

[3] B. V. Cherkassky, A. V. Goldberg and T. Radzik, Shortest paths algorithms: Theory and
experimental evaluation', Mathematical Programming 73, 129-174 (1996).

[4] M. Florian, S. Nguyen and S. Pallottino, A dual simplex algorithm for finding all shortest
path, Networks 11, 367-378 (1981).

[5] R. W. Floyd, Algorithm 97: Shortest path, Communications of the A.C.M. 5, 345 (1962).
[6] G. Gallo and S. Pallottino, A new algorithm to find the shortest paths between all pairs of

nodes, Discrete Applied Mathematics 4, 23-35 (1982).
[7] G. Gallo, and S. Pallottino, Shortest path algorithms, in (B. Simeone et al., eds.) Fortran

codes for network optimization, Annals of Opeations. Research 13, 3-79 (1988).

Le Gosier, Guadeloupe, June 13–18, 2004

8 TRISTAN V : The Fifth Triennial Symposium on Transportation Analysis

Le Gosier, Guadeloupe, June 13–18, 2004

[8] S. Nguyen, S. Pallottino and M. G. Scutellà, A new dual algorithm for shortest path
reoptimization, in Transportation and Network Analysis: Current Trends, M. Gendreau and
P. Marcotte (eds), Kluwer (2002) 221-235.

