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1  Introduction 

In many transportation problems, it is necessary to compute many times shortest paths among 
particular nodes (denoted in general as centroids) in a directed and weighted graph G = (N, A, c), 
where n = |N| is the number of nodes, m = |A| is the number of arcs, and cij denotes the cost of arc 
(i,j) ∈ A. By R we denote the set of centroids, of cardinality k = |R|.  
 
The k to k shortest path problem, which we call for short as “k2sp” problem, can be solved by 
working out k “shortest path tree” problems, one for each centroid either as origin or as 
destination of the paths [1]. An alternative approach to solve k2sp problem, especially when k = 
O(n), is to solve the “all pairs shortest path” problem, which requires to handle an n-order matrix 
of distances [5]. This memory requirement, in general, prevents to use such a kind of approach 
since the current size of transportation networks reaches thousands of nodes and arcs (for some 
problems the size of the network can reach million of nodes). 
 
Another approach proposed in literature is based on the reoptimization approach, where one can 
exploit the optimal tree found for the i-th centroid to compute the shortest path tree of the i+1-th 
centroid [4, 6, 8]. 
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In this paper we aim to show how it is convenient to simultaneously compute k shortest path trees 
(or a portion of them in case of lack of memory), by proposing a general approach, which we call 
multisource, that combines simplicity of the algorithm with its efficiency. The first experimental 
results obtained show how promising the multisource approach is, and suggest to deeply 
investigate the multisource shortest path algorithms efficiency to provide a powerful tool for 
transportation models and software. In fact, in principle, it is possible to generalize any existent 
shortest path tree algorithm to a similar multisource algorithm. 
 

2  The Problem 

Let r ∈ R be a centroid, which will be the root of the finding shortest path tree, formed by paths 
having r as origin (the case in which r is the path destination can be symmetrically stated); the 
shortest path tree problem with root r can be written as a Linear Programming flow problem: 
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The dual problem of (Pr) is 
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where iπ  denotes the dual variable associated with i ∈ N, usually referred to as the potential of i.  

The dual constraints correspond to the so called Bellman conditions when a label array d is used 
as an estimation of the potential array: 
 

  jiji dcd ≤+ ( ) Aji ∈∀ ,  (1) 

 
To solve the k2-sp problem we have to solve the collection of k pairs (Pr) and (Dr) problems, one 
for each root r ∈ R. 
 
As far as the solution of a single pair (Pr) and (Dr) for a given r ∈ R is concerned, the iterative part 
of any generic (primal) shortest path tree algorithm is depicted in figure 1. Q is the set of 
candidate nodes formed by all the nodes whose forward star may contain arcs violating the 
Bellman conditions (1). Moreover, pj denotes the predecessor node of j, that is the node which 
precedes j in the current tree, for each j ∈ N. For more details see [1, 7]. 
 

repeat 
    select and extract i from 
Q; 
    foreach (i,j) ∈ FS(i) do 
        if di + cij < dj then 
             dj ← di + cij  
             pj ← i 
             if j ∉ Q then insert j 
into Q 
until Q = ∅; 

Figure 1. The iterative part of a generic algorithm for a single problem 

3  The multi-source approach 

Let us suppose that we have enough memory to handle all the k shortest path trees; that is we have 
enough memory of order O(kn). In case of insufficient available memory, a subset of trees is 
simultaneously treated and the sequencing of trees to treat will be explained afterwards. 
 
By dr

i and pr
i we denote the label and the predecessor of node i ∈ N, respectively, while by Qr we 
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denote the set of candidate nodes, all relative to the root r ∈ R. Among the k roots, one of them, 
which we will denote from now as r, is chosen as the leader root, while the others roots s ∈ R \ {r} 
are denoted as the active ones. 
 
The basic idea is to apply a classical primal algorithm for the tree rooted at r and, each time a node 
i is extracted from Qr, the algorithm simultaneously checks the Bellman conditions for all arcs 
(i,j) ∈ FS(i) to all active roots s such that i ∈ Qs, as shown in figure 2. 
 
The leader root r obviously belongs to R(i), so node i is removed from all the sets of candidate 
nodes. At the end of the iterative part, that is when Qr = ∅, an active root is designed as new leader 
r, and the iterative part is repeated for that new leader. The multisource algorithm ends when all 
the roots have been treated as leader. 
 
The advantage of such an approach resides in starting to work on a new leader root with a set of 
labels whose values are closer to the optimal values than the initial +∞ values. The more 
important advantage is due to a better handling of the input data. In fact, once obtained the current 
node i, the selection from the memory of the data relative to FS(i) requires a significant time of 
accessing to the graph data structures, which can be higher than the repeated checking of the 
Bellman conditions of arcs (i,j) ∈ FS(i) for the active roots belonging to R(i). 
 
 

repeat 
select i from Qr; 
set R(i) = {s ∈ R: i ∈ Qs}; 
foreach s ∈ R(i) do extract i from Qs; 
foreach (i,j) ∈ FS(i) do  
    foreach s ∈ R(i) do 
        if ds

i + cij <  ds
j then 

             ds
j ← ds

i + cij  
             ps

j ← i 
             if j ∉ Qs then insert j into Qs 
until Qr = ∅; 

Figure 2. The iterative part of a generic multisource algorithm 
 
To implement a multisource algorithm some choices must be made: 
• to define the order of roots to become leader; 
• which type of classical algorithm is adopted for the leader root; 
• how to implement the collection of sets of candidate nodes; 
• in case of lack of memory, how to separate the active roots from the “not already activated” 
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ones, and how to activate them. 
 
In the paper we will propose various solutions to the above points and we will investigate the 
more effective choices. 
 
 

4  A particular multisource implementation and its performance 

In this section we want to analyze the first experimental results for a very simple implementation 
of multisource. In particular: 
• we use the increasing order of integer numbers as the roots order; 
• we use, for the leader root, the algorithm Dijkstra with the 4heap [2]; 
• we implement a k×n bit-array B to describe the sets of candidate nodes for the active roots: 

B[s,i] = 1 if i ∈ Qs, and 0 otherwise, for each s ∈ R \ {r} and for each i ∈ N; 
• we restrict the test graph size to treat all the roots simultaneously. 
 
In the following we will call MS-D4h the implemented algorithm and we will compare its 
performance versus its twin algorithm D4h, that is the classical Dijkstra algorithm with a 4heap as 
a priority queue [2, 3]. 
 
In table 1 we report the results obtained for a complete graph with n=3000 nodes (and almost 9 
million of arcs), and with arc costs uniformly generated in the interval [1, 10000]. We vary the 
number of roots (randomly chosen) from 10% to 100% of the nodes. 
 
For the tests we used a PC AMD Athlon Thunderbird 1.2 GHz, 512 MB Dimm Sdram PC133 
with Suse Linux 8.2. The algorithms have been coded in C language and compiled with gcc 
ver.3.3 with option “-o4”.  
 
The c.p.u. times reported are relative to the computational part only, that is the time to read the 
graph and to write the results is not computed.  
 
Column 2 reports the global number of node extractions from the set of candidate nodes Q for the 
algorithm D4h. In column 3 there is the global number of node extractions from the various Qr for 
the algorithm MS-D4h when r is the leader root, while in columns 4 it is reported the global 
number of forward stars analyzed. Columns 5 and 6 give the total running time in seconds. Finally, 
the last column gives the rate of the running time saving obtained with the multisource approach. 
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For both algorithms we stop the single root calculation only when the set of candidate nodes is 
empty; while, it is well known that, when the Dijkstra approach is used for a graph with 
non-negative arc costs, it is possible to stop the computation once the last centroid is extracted 
from Q. 
 

Table 1: Experimental results 
# Roots 
% n 

Heap Extr 
D4h 

Heap 
Extr 
MS-D4h 

# FS analyz.
MS-D4h 

TIME  
D4h 

TIME  
MS-D4h 

% SPEED 
UP 

10 900,000 12,848 1,606,665 128.78 119.13 8.10 % 
20 1,800,000 13,317 3,226,702 257.75 229.35 12.36 % 
30 2,700,000 13,527 4,841,978 386.58 351.73 9.89 % 
40 3,600,000 13,637 6,442,847 515.52 445.65 15.72 % 
50 4,500,000 13,724 8,063,571 644.32 555.42 16.00 % 
60 5,400,000 13,802 9,680,413 773.20 658.28 17.45 % 
70 6,300,000 13,842 11,304,479 902.08 778.78 15.83 % 
80 7,200,000 13,926 12,913,818 1,030.97  882.10 16.87 % 
90 8,100,000 14,056 14,528,160 1,159.88 1,000.68 15.90 % 
100 9,000,000 14,077 16,156,401 1,288.80 1,109.45 16.16 % 

 
The preliminary results are very promising. They show that the multisource approach is effective. 
This is mainly due to the number of accesses to the graph structure to select the nodes forward 
stars. In fact, in the case of 100% of nodes playing the role of roots, the number of accesses 
decreases from 9 millions to few thousands, see columns 2 and 3. The saving due to that 
drastically reduced number of accesses to the graph structure compensates the overhead due to the 
higher number of scans of the forward stars, see column 4, since only the leader root computation 
follows the Dijkstra’s ordering of nodes selection. 
 
Indeed, if the node label ds

j, of a node j related to a root s, reaches the optimum value before that s 
becomes the leader root, then there is no need of using heap insertion, successive extraction and 
forward star analysis for node j for that root.  
 
In case of lack of memory, two approaches are possible: 

• refreshing: every time that the computation for the leader root is completed, a new root is 
activated and stored in place of the leader root, and another root is selected as leader; 

• paging: all the active roots are processed, without substitutions. Once completed the 
computation for all of them, an equal number of new roots is activated, and one of them is 
selected as leader. 
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5  Conclusions 

The preliminary experimental results suggest to perform a wide experimentation of the 
multisource approach, both by increasing the number of graph tests (with different structure and 
dimension) and by producing different versions of multisource. 
 
In fact, to each classical shortest path algorithm, a multisource counterpart can be paired; this 
allows to deeply investigate which type of data structures will result more effective to exploit the 
multisource approach. 
 
The presentation at the Conference will be devoted to the analysis of the experimentation. 

 
 

After a couple of days this extended abstract was concluded, Prof. Stefano Pallottino suddenly 
died.  
I want to dedicate this paper to his memory to express my gratitude for all the time spent working 
together.  
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