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1 Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) models the situation in which a
fleet of vehicles must visit a collection of customers requiring a service. Each request consists
in the specification of a quantity of goods to be either picked-up or delivered to a specified
location during one or more time windows. Vehicles must be routed in order to service all re-
quests, and, each route must satisfy both time windows and vehicle capacity constraints. The
primary objective function is to minimize the total number of vehicles used, and, secondary to
minimize the total travelled distance. The problem is known to be NP-complete, and, several
efforts have been devoted to develop efficient local search heuristics to solve either the Pick-up
and Delivery version or the single Delivery or Pick-up version.

Most of the recently published VRPTW heuristics use two-phase approaches. In the first
phase, a construction heuristic is used to generate a feasible initial solution. During the second
phase, an improvement heuristic is applied to the initial solution. These route-improvement
methods modify the current solution iteratively by performing local searches for better neigh-
boring solutions.

One of the most critical features of local search is the definition of (i) the neighborhood
structure and (ii) the exploration strategy. For this problem many different neighborhoods
have been considered and experimented. Many successful approaches existing in the literature
use a multi neighborhood structure. In particular, in [1] a Reactive Variable Neighborhood
Search (RVNS) has been recently proposed and it obtains very good results. It is an extension
of the Variable Neighborhood Search (VNS) proposed in [6]. More in details, the classical
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VNS explores increasingly different neighborhoods of the current solution jumping from one
neighborhood to an other one when an improvement in the objective function is achieved. If
exploring all the neighborhoods no improvement from current solution is attained the proce-
dure stops. In the RVNS, once all the neighborhood are explored, a set of parameters limiting
the search space is increased in order to perform a more thorough search.

In particular, such approaches that consider different neighborhood structures have two main
elements to take care of: (i) the dimension of the search space (defined both by the number
of the neighborhoods and by their dimension) and (ii) the policy of exploration (i.e., mainly
it can be an exhaustive search or a random one). Obviously, there is a trade off between these
choices. Indeed, when the dimension of the search space is not too large an exhaustive explo-
ration can be performed; however, for larger instances we need a bigger search space that does
not allow a complete search. The RVNS applies an exhaustive search to several neighborhood
structures whose dimension is increased iteratively and compatibly with a reasonable running
time.
We propose to use a multi-neighborhood structure, where, however, at each iteration a neigh-
borhood is randomly selected (Random Neighborhood Search) to give the same selection
chance to any point of the multi-neighborhood structure. Moreover, we propose to use a
shaking phase based on RNS to enforce the route-improvement scheme, differently from other
approaches that use a single neighborhood structure like ejection chains proposed firstly by
Glover [5] and used, later, by Bräysy [1].

The sequel of the paper is organized as follows. Next section briefly describes our overall
technique. Section 3 contains a description of some of the operators used to generate the
multi-neighborhood. Section 4 reports a summary of our results obtained on Solomon’s in-
stances.

2 The Algorithm

Let G = (V ∪ {v0}, E) be a connected digraph consisting of |V ∪ {v0}| = n + 1 vertices,
where V is a set of customers, v0 is a special vertex representing a central depot and E is
a set of arcs to which a nonnegative weight, denoting the travel time, is associated. Each
customer i ∈ V requires a service that consists in the specification of a quantity qi of goods
to be picked-up or delivered to a specified vertex during one or more time windows. Vehicles
of equal capacity C must be routed to service all the customers. A feasible vehicle route
R = {v0, i1, i2, . . . , il−1, il, v0} of length l is an ordered sequence of customers to be serviced
such that the total capacity of the vehicle is not exceeded and all the time windows constraints
are respected. A set S = {R1, R2, . . . , Rh} of h feasible routes is feasible for the VRPTW if
all the customers are serviced and each customer is visited by a single route. We look for a
feasible set S of minimum size.

We construct an initial feasible solution S in the following way. We start with a set of n

routes, that is a route ri starts from the depot v0, visits client vi and comes back to the depot.
In order to decrease the number of routes, we apply the following two intra-route exchange
operators to each of the n route to obtain the initial feasible solution S:
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Let S be an initial feasible solution; iter=1;
While iter < MaxIterations do

let N1(S), N2(S), . . . , Nh(S) be h different neighborhoods of S;
Select i at random from 1 to h;
Let S′ ∈ Ni(S) such that d(S ′) ≤ d(S);
Let S′′ the returned solution of Route-elimination phase applied on S ′;
S = S′′;
If |S′′| < |S′| then iter =1;
else iter=iter+1;

End while

Table 1: Our heuristic algorithm.

- Move a customer k from a route R to a route R′;
- Move a customer k1 from route R1 into position of costumer k2 in R2 and move k2 into one
other route different from R1 and R2.
Starting from this initial feasible solution S, we define its multi-neighborhood, N1(S), . . . , Nh(S),
by using different operators (some of these operators are described in the next section). We
explore the solution space by a Random Neighborhood Search (RNS), that is, we select at
random one of the h neighborhoods of S, say Ni(S). Then, we select a new feasible solution
S′ ∈ Ni(S) such that the total travelled distance, d(S ′), is less than or equal to d(S). The
route elimination procedure is then applied to decrease the total number of routes in S ′ to
obtain S′′. We return to the initial step with the new solution S ′′ such that |S ′′| ≤ |S′| and
repeat the procedure a predefined number of iterations. To deeply explore the search space we
reset the number of iterations whenever |S ′′| < |S′|. More in details, in the route elimination
procedure, a route Ri ∈ S′ is selected and we try to move one by one the customers served by
Ri to any other route by using different exchange operations. Any time it is not possible to
eliminate a customer from Ri, we shake S ′\{Ri} by using RNS and obtain a different solution
Si that belongs to a random selected neighborhood of S ′\{Ri}. Then, we try to move the
blocked customer of Ri to the routes of Si; if this is not the case, then, the shaking phase is
carried out again, until a predefined maximum number of iterations is reached. Table 1 gives
the pseudo-code of our approach.

3 Operators

We used 8 different operators to define the multi-neighborhood of a feasible solution S. In
particular we used 4 intra-route operators and 4 inter-route operators. Given a feasible solution
S, an inter-route operator defines new solutions by changing the ordered sequence of customers
of each route of S; while an inter-route operator exchanges customers among routes. For each of
this operators we consider also a reverse version: instead of analyzing the route by considering
the ordered sequence (v0, i1, i2, . . . , il−1, il, v0), the reverse sequence (v0, vl, vl−1, . . . , v2, v1, v0)
is analyzed.
The intra-route operators we used are:

1. Before-k-Reposition: remove, from a route R, a customer k1 in some position after
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customer k, and, if the resulting route is feasible, put k1 immediately before customer k.

2. After-k-Reposition: remove, from a route R, a customer k1 in some position after cus-
tomer k and, if the resulting route is feasible, put k1 immediately after customer k.

3. 2-Exchange: swaps two customers k and k1 that belong to the same route if a distance
saving is obtained.

4. Or-opt: move from a route R a sequence of at most three adjacent customers and relocate
them in a different position. In our implementation the sequence’s length is 1.

The inter-route operators we used are:

1. Relocate: move a customer k from a route R in a route R′ if this relocation is distance
saving.

2. 2-Exchange: swaps customer k from route R with customer k1 in route R′.

3. k-to-1 Exchange: swaps customer k from route R with two consecutive customers in
route R′ if this relocation is distance saving.

4. 1-to-1+1 Exchange: (our new operator for inter-route exchanges) replaces a customer k

in a route R with two customers k1 and k2, that belong to two different route R′ and
R′′, and tries either to insert k in the k1 position either to insert k in the k2 position.

4 Computational Results

We tested our RNS approach on Solomon’s instances. These instances consist of six sets (R1,
C1, RC1, R2, C2, RC2), each of which contains between eight and twelve 100-node problems
over a service area defined on a 100x100 grid for a total of 56 different instances. For R1
and R2, the customer locations are distributed uniformly over the service area. Sets C1 and
C2 have clustered customers, and sets RC1 and RC2 have a combination of clustered and
randomly located customers. In addition, R1, C1, and RC1 have tight time windows and a
vehicle capacity of 200 units; R2, C2, and RC2 have a long scheduling horizon and vehicle
capacity of 1000, 700, and 1000 units, respectively. The time window and the vehicle capacity
constraints in problem sets R1, C1, and RC1 allow only a small number of customers to be
served by each vehicle. The opposite is true for R2, C2, and RC2.
Our procedures was implemented in C language, the operating system was Suse linux 9.0. The
computational experiments were carried out on Xeon 2.4 Ghz bi-processor with 1024 Mb of
RAM.
Table 2 above gives our results obtained on all Solomon’s instances. We reports the final
solutions produced by the proposed RNS method compared with the results of the best meta-
heuristics proposed recently by other authors. The notation CNV indicates the Cumulative
Number of Vehicles over all 56 test problems. The first column in the table contains the
class of instances and all the other columns report the best known results in the literature.
For each class and each author a couple of values is given: the bold number represents the
average number of vehicles computed on all the instances of the class while the other is the
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corresponding average total travelled distance. Note that none of the proposed methods in the
literature dominates the others in all the classes and we are competitive with the best results
of the best methods.

Table 2: Comparison of our methodology with existing approaches on Solomon’s instances

PROB TBGGP CR LS GTA HG RGP CLM RNVS RNS

R1 12.17 12.17 12.17 12.00 11.92 12.08 12.08 11.92 12.17

1209.35 1204.19 1249.57 1217.73 1228.06 1210.21 1210.14 1222.12 1253.85
R2 2.82 2.73 2.82 2.73 2.73 3.00 2.73 2.73 2.67

980.27 986.32 1016.58 967.75 969.95 941.08 969.57 975.12 865.11
C1 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

828.38 828.38 830.06 828.38 828.38 828.38 828.38 828.38 839.77
C2 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

589.86 591.42 591.03 589.86 589.86 589.86 589.86 589.86 591.24
RC1 11.50 11.88 11.88 11.63 11.63 11.63 11.50 11.50 11.62

1389.22 1397.44 1412.87 1382.42 1392.57 1382.78 1389.78 1389.58 1440.17
RC2 3.38 3.25 3.25 3.25 3.25 3.38 3.25 3.25 3.25

1117.44 1229.54 1204.87 1129.19 1144.43 1105.22 1134.52 1128.38 1243.38
CNV 410 411 412 407 406 412 407 405 411

TBGGP: Taillard et al [10],CR: Chiang and Russell [2], LS: Liu and Shen [8], GTA: Gambardella et al. [4], HG: Homberger
and Gehring [7], RGP: Rousseau et al. [9], CLM: Cordeau et al. [3], Bräysy [1].

5 Conclusions and Further Research

In this paper we propose a multi-neighborhood approach to solve VRPTW where a random
selection of a neighborhood is carried out in order to give the same selection chance to any
neighboring solution. We proposed to use the RNS both in the building phase, where we
search for a feasible solution improving the total distance, and in the route-reduction phase.
We test our method on Solomon’s instances obtaining competitive results compared with the
best known results existing in the literature.
We are going on with our experiments in order to understand the importance of the role of
the RNS method in the overall strategy. That is, we would like to understand the relevance of
looking for new solutions near local optima or if it is more effective to choose new solutions in a
completely random fashion. Therefore, we are performing new extensive experiments by using
different exploration strategies in the building phase (e.g., VNS and its variants) and different
shaking phases in the route elimination (e.g., ejection chains or a combination of methods).
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