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1 Introduction

The problem of locating sensors to detect traffic flow volumes, or other information such as
speed, turning ratios, route flow volumes related to them, has relevance in traffic management
and control. We can distinguish three kind of sensors: (i) counting sensors that count ve-
hicles in order to give traffic volume on a lane or road of a network (e.g., the classical loop
inductance detectors); (ii) image sensors that provide an “image” of vehicle/traffic flow (us-
ing a fixed camera mounted on a pole or a tall building); (iii) path-ID sensors (readers) that
de-code transmission from vehicles to obtain, for example, freight information from trucks
(good carried, its origin, its destination, container weight, custom clearance, fees paid, etc.),
route/schedule information from buses (route number, schedule number, passenger count, etc.)
and account information from electronic toll tags (toll paid, credit remaining, vehicle ID, etc.).

In this context several location problems arise on where to locate different kinds of sensors
to monitor or manage the particular classes of traffic detected. Some problems on locating
sensors on a network addressed in the literature are:

(i) the estimation of total flow volumes from all origins to all destinations (O/D matrix
estimation) (e.g., [10], [11], [12]);

(ii) the estimation of flow volumes on the non-monitored links of the network (e.g., [1], [2],
[3], [6]);

(iii) the estimation of flows on routes from origins to destinations (e.g., [6], [7]).

In this paper we address the problem of locating image sensors on the nodes of a network,
where these sensors provide turning ratios at nodes. We focus on the development of two
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generic locational decision models: (1) “How many and where should image sensors be lo-
cated to obtain sufficient information on flow volumes on paths?”, and (2) “Given that the
traffic management planners have already located count detectors (counting sensors) on some
network arcs, how many and where should image sensors be located to get the maximum
information on flow volumes on path?”.

We formally state the problem, in the sequel referred to as IMAGES. The analysis is de-
veloped, as in [7], by considering different problem scenarios: (i) when no counting sensor is
already located on the network (IMAGES-zero) and (ii) when there are some counting sensors
located on the network (IMAGES-par). We show these problem scenarios are special case of
two new combinatorial problems, respectively, the Full Rank Submatrix with Few Colors Prob-
lem and the Full Rank Submatrix Extension with Few Colors Problem. Complexity analysis is
developed for these new problems that are proved to be NP -complete. Special instances are
presented for which there are polynomial algorithms to find an optimal solution.
In this paper we give a detailed description of both IMAGES-zero and IMAGES-par. We then
describe the relation between IMAGES-zero and the Full Rank Submatrix with Few Colors
Problem and attendant complexity results are provided.

2 Locating Image sensors on nodes

Video vehicle detection system provide non-intrusive vehicle detection through machine vision.
Such systems allow users to place virtual detectors in the field of view, rather than physically
placing the detectors on the roadway pavement, providing flexible detector placement. An
image can be obtained from either (i) a fixed camera mounted on a tall building or a pole and
(ii) a moving camera installed on an air-borne platform such as helicopter. By processing the
images obtained by fixed or mobile cameras, it is possible to recognize vehicles on the scene
and movement of these vehicles. For example, by locating a fixed video camera that takes
images of the traffic movement at an intersection of the network we can estimate the turning
ratios at the intersection. For instance, locating an image sensors on node 11 of the network
in Figure 1, we can measure the turning ratios at this node. More specifically, we are able to
measure the proportion of flow that goes to the outgoing arcs a16 and a17 from each incoming
arc a15 and a19.

Notations

Let Γ = (N,A) be a graph representing the traffic network, where the set N of nodes has size
|N | = n and the set of arcs A has size |A| = m. A path Y = {a1, a2, . . . , as} is a sequence
of arcs ai ∈ A such that ai = (v, w) and ai+1 = (w, z), ∀i = 1, . . . , s − 1. Since flow on an
arc contains flow from several paths, from different origin-destination pairs, we need to define
total flow in terms of path flows. We will simply let this total flow be decomposed into path
flows yi on path Yi, i = 1, . . . , p, where p is the total number of paths used in the network.
We will let fa be the total flow on arc a ∈ A for the time interval being considered (note that
a counting sensor on arc a measures fa). Let B = {bij}, i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , p}
be the m × p arc/paths incidence matrix, that is bij = 1 if arc ai belongs to the path Yj and
bij = 0 otherwise. For example, the i-th column of matrix B, B i = [0, 1, 1, 0, 1] denotes a path
with arcs a2, a3, a5 in a five-arc network consisting of arcs A = {a1, a2, a3, a4, a5}. Our aim
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Figure 1: A network of 12 nodes and 19 arcs.

is to determine the flow volume yj of each path Yj, j = 1, . . . , p, on the network by locating
image sensors on the nodes of the network.

Figure 1 shows a network of n = 12 nodes and m = 19 arcs, where there are p = 12 paths.
With each arc ai ∈ A the set of paths Yai

is associated. For example with arc a8, the set
Ya8

= {Y3, Y5} denotes the set of paths that contains arc a8. Let fai
i = 1, . . . 19 the total

flow volume on arc ai. We can associate with each arc a linear equation which gives the flow
volumes of the arc as sum of flow volumes on paths. For example with arc a8, we can associate
the equation y3 + y5 = fa8

.
Let us suppose counting sensors are located on all the arcs of the network. In this case, we
know the entire vector f = {f1, f2, . . . , fm} of the arc flow volumes. To know the path flow
volumes we should solve the system of linear equations

By = f (1)

where y and f are column vectors of p and m components respectively. The general, non-trivial
case for system (1) is that rank(B) = k and k < p. Thus, if a unique feasible set of path flow
volumes exists (that is, all data are consistent), new sensors need to be located to determine
path flows. We assume from here on, min(m, p) = p and rank(B) = k < p. Under this
assumption, the system (1) does not have a unique solution. This means that even locating
counting sensors on all arcs of the network we are not able to determine univocally the flow
volume of each path Yj, j = 1, . . . , p. On the other hand, by adding an appropriate set of new
equations we may obtain a new matrix that has full rank, and thus a new system having a
unique solution.

Indeed, by locating image sensors on a node on the network, we can add new linear equations
to system (1). In particular, locating a fixed camera that takes images of the traffic flows at
an intersection of the network we can estimate (i) the link flow volume of each arc incident to
the node and (ii) the turning ratios at the intersection. See, for example, the simple network
in Figure 2 where there are three paths on each arc. By locating an image sensors on node 3,
(i) we obtain the following four equations associated with the arcs incident to the node (which

Le Gosier, Guadeloupe, June 13-18, 2004



4 TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis

Y 3  Y
4 Y 5

Y �  Y �  Y �

� � � � � �

Y�  Y�  Y	

1

2

4

5
3

Figure 2: An image sensor located at node 3 adds 7 equations.

we can call external equations):

Y4 + Y5 + Y6 = f(1,3) (2)

Y1 + Y2 + Y3 = f(2,3) (3)

Y3 + Y4 + Y5 = f(3,4) (4)

Y1 + Y2 + Y6 = f(3,5) (5)

and also (ii) we detect the turning ratios t3(1,4),t
3
(1,5),t

3
(2,4),t

3
(2,5). If we know the set of the paths

and the arc flow volumes we can define the following four additional equations (which we can
call internal equations):

Y4 + Y5 = f(1,3)t
3
(1,4) (6)

Y6 = f(1,3)t
3
(1,5) (7)

Y3 = f(2,3)t
3
(2,4) (8)

Y1 + Y2 = f(2,3)t
3
(2,5) (9)

Then, our aim is to answer the following question:

Question 1 (IMAGES-zero) What is the minimum number of image sensors to locate on the
network, and where to locate them in order to add new equations to system (1) that result in
a new system having full rank (i.e a unique solution)?

In IMAGES-zero, we do not have any counting sensor. This may not be true in all sce-
narios. Indeed, in most of the practical applications we might know flow volumes on some
arcs of the network where counting sensors are already located. In such cases, we suppose that
a subset f 1 = {ai1 , ai2 , . . . , aik}, ik < m, of arc flow volumes, corresponding to the arc subset
A1 ⊆ A, are known, resulting in the system:

B1y = f1 (10)

where B1 is a submatrix of B obtained by considering the set of equations associated with the
arcs in A1. The question in these cases is:

Question 2 (IMAGES-par) What is the minimum number of image sensors, in addition to
counting sensors, to locate on the network and where to locate them in order to add new equa-
tions to system (10) that result in the new system having a unique solution?
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First, there is an issue on feasibility of the problem. There can be cases where even locating
image sensors on all the nodes of the network we do not have enough linearly independent
equations to determine all path flows (i.e. when the resulting matrix does not have full rank).
A sufficient condition for the feasibility of the problem is that the matrix obtained, including
all the equations of each node of the network, together with the set of initial equations, has
rank equal to p (i.e. the number of paths). Let q0 be the number of initial equations corre-
sponding to the counting sensors located on the arcs of the network. Let qi be the number of
equations associated with node vi and q =

∑n
i=0,1 qi. Let P be the (q × p) coefficient matrix

obtained including the initial set of q0 equations and all of the equations associated with each
node of the network (in the sequel, we refer to this matrix as the coefficient path matrix ).

Remark 1 IMAGES is feasible iff rank(P ) = p.

3 Complexity Analysis and Mathematical Formulation

Now, we introduce the new problem Full Rank Submatrix with Few Colors Problem (P1) and
show the relationship between the decision version of IMAGES-zero and P1. Subsequently,
we give the mathematical formulation for P1.

The Full Rank Submatrix with Few Colors Problem (P1)
Let L be a 0-1 (q × p) matrix (q > p) with rank(L) = p, C = {1, 2, . . . , n} be a set of colors,
and, R be the set of rows of matrix L. Let c(r) = i denote the color assigned to row r ∈ R

of matrix L and c(S) =
⋃

r∈S c(r) be the set of different colors in the subset S ⊆ R of rows.
Finally, let K be a positive integer.
Does there exist a set S ⊆ R of linearly independent rows of matrix L such that (i) the cor-
responding submatrix LS has rank(LS) = rank(L) and (ii) |c(S)| ≤ K (i.e. the number of
different colors assigned to the rows in S is less than or equal to K)?

A subset S ⊆ R of rows of matrix L is feasible for P1 it it satisfies condition (i).

When matrix L is the coefficient path matrix of a set of paths on a network, problem P1
solves IMAGES-zero. Let Γ = (N,A) be a traffic network, |N | = n, p be the number of paths
defined on Γ, and let P be the coefficient paths matrix. Now we assign to each row of P a color
and show the relationship between feasible solution of P1 defined on P with such a coloring
assignment and feasible solution of IMAGES-zero.
Each node vi ∈ N is associated with the set of rows Si of matrix P . Let C = {1, 2, . . . , n}
be a set of colors. Assign color i to node vi ∈ N and to all the rows in Si associated with vi.
Feasibility of IMAGES-zero implies, by Remark 1, rank(P ) = p. For each subset S of rows
of matrix P the number |c(S)| of different colors assigned to rows in S is equal to the number
of nodes where we must locate image sensors in order to get the set S of equations. That is,
any subset S of rows of matrix P that is feasible for P1 and such that |c(R)| ≤ K, defined on
the coefficient path matrix P with the node coloring assignment, corresponds to a set M ⊆ N

of nodes with |M | ≤ k. Since rank(P ) = p, then the subset M is such that we can determine
the flow volumes of all paths p defined on the network Γ.
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Related Literature

It can be shown that P1 consists in finding a subset Q ⊆ R that minimizes the rank function
of a partition matroid M1 and contains a basis of matroid M2, both of them being defined on
the row set of matrix P . The minimization of a submodular function is a polynomial problem
(for a recent survey see for example [5]). However the constraint minimization of a submodular
function is in general a NP-complete problem. Polynomial cases are found by restricting the
family of sets over which minimizing the submodular function: Grötschel, Lovász and Schrijver
[9], Goemans and Ramakrishnan in [8].

Complexity

To prove NP-completeness of P1 we consider the special case when each row of matrix L

has exactly two non-zero elements. For this particular instance the problem is to look for a
spanning L-forest1 of an edge-colored graph with the minimum number of colors. Moreover,
polynomial instances are analyzed by considering two main characteristics of the problem:

• the number of rows of matrix L that have the same color (i.e., the size of the sets
Ri = {r ∈ R : c(r) = i}, for each i ∈ {1, 2, . . . , n});

• the number of non-zero elements in each row of the matrix.

Table 1 summarizes some of our results for P1. Each cell of the table defines an instance of
P1 characterized by (i) the number of non-zero elements in each row (column NZ ) and (ii) the
number of rows of L having the same assigned color i (i.e., columns Ri = 1, Ri = 2, Ri > 2,
for each i ∈ {1, 2, . . . , n}). In each cell, P indicates that the problem instance is polynomially
solvable, while NP means it is NP-complete.

Table 1: Problem P1. Complexity Analysis

NZ |Ri| = 1 |Ri| = 2 |Ri| > 2

1 P P ?

2 P ? NP

>2 P ? NP

The paper will develop the results summarized in the Table 1. Furthermore, it will provide a
heuristic when the problem is NP-complete.
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