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1 Introduction

A major feature of intermodal transportation systems is the presence of large container ter-
minals, where loading and unloading of containers are split in different tasks that depend on
carrier categories, cargo types and service requirements. The efficiency of a terminal is in-
fluenced by the ability to manage the various transfer tasks done by means of quay cranes,
transfer cranes, trucks and so on. The terminal resources and their utilizations can be suitably
modelled and optimized to improve the overall system productivity. In this context, two main
research issues arise, relevant to the definition of suitable models for terminal operations and
to the use of such models to find a decision strategy for controlling container transfers inside
the terminals.

The literature on modelling of intermodal operations is quite recent. Different types of models
have been proposed: basic simulation models [2, 4], generic discrete-event systems [6, 7] and
multi agents [5]. Clearly, the choice of a model has to be made depending on the required level
of detail, as well as on the specific goals of performance evaluation and decision support [8].
As a matter of fact, every modelling paradigm is affected by both advantages and drawbacks.
For example, event-driven models allow to obtain a precise description of overall terminal
operations but are unsuitable to synthesize a control strategy, which, on the contrary, can be
more easily addressed by means of aggregate models.

In this paper, a different approach is followed that consists in using an “ad hoc” developed
model which constitutes the basis for defining an optimal control strategy. Specifically, the
proposed model is based on a set of queues; each queue represents a different container alloca-
tion stage in the area of the terminal, where containers are stored, depending on the transport
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modality and routing. The dynamic evolutions of such queues are described by discrete-time
equations, where the control variables take into account the utilization of terminal resources
as load/unload capabilities and the available yard space. An optimal control problem is stated
that consists in minimizing the transfer delays of containers in the terminal. A receding–
horizon strategy is proposed for the solution of such control problem.

2 The model of intermodal terminal operations

A general structure of maritime container terminals is depicted in Fig.1. Different areas can
be identified in the proposed structure: a quay is a part of the terminal devoted to handling
operations with containership. Analogously, gates for trains and trucks are present in the
terminal.

Figure 1: Layout of a container terminal.

Figure 2: Block of a container yard.

The yard is the central storage area typically divided in blocks, where containers are piled up,
as shown in Fig. 2. The transfer machines operating in the yard are quay cranes, transfer
cranes, stackers and yard trucks. In the considered kind of container terminal, the storage
yard also includes a dedicated area where containers are opened and goods inside containers
are processed before being stocked again. As already mentioned, the overall container terminal
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is modelled by representing the different physical areas as buffers. Fig. 3 describes pictorially
the proposed model.

Figure 3: Queue model of the intermodal terminal operations.

The arrivals of containers at the terminal by ship, road and rail are represented by quantities
a1, a2 and a3, respectively. Analogously, quantities d1, d2 and d3 model the departures of
containers from the terminal by ship, road and rail. When a containership reaches the terminal,
the unloading process is modelled by a queue, which has a length at time t denoted by q1(t)
in TEUs. The containers in this queue are routed to the same transport mode (transhipment)
or to the other ones. Similarly, containers arriving by road and rail are buffered in the queues
q2 and q3: the direction of transfer is only for ship export through queue q4, as we deal with a
maritime terminal. Differently from q1 and q3, q2 does not model unloading operations, but
represents the waiting time of the trucks at the gates. As a matter of fact, trucks are able to
transport containers directly to the yard.

The containers temporary storage is made by means of the queue q4 in the quay and by the
queues q5, q6, q7, q8, q9, and q10 in the yard. Buffer q4 models the presence of containers
in the quay waiting for being loaded on a ship, q5, q6 and q7 are queues for containers that
are stored in the yard and will be loaded on ship, truck and rail respectively, while q8, q9 and
q10 are queues for containers that are going to be loaded on ship, truck and rail respectively
but need to be opened and worked in the yard. The export buffering is represented by means
of the queues q11, q12, q13, q14, q15, and q16. In particular, q11 and q13 represent queues for
loading operations to ship and rail, q12 represents the waiting time of outgoing trucks at the
gate, whereas q14, q15, and q16 model the departure of these means of transport, when their
level of storage is exactly equal to the external demand di(t).

A complete model of the transfer activities in the terminal is described by the following
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discrete–time equations:

q1(t + 1) = q1(t) + ∆T [a1(t) − µ1u1(t)]
q2(t + 1) = q2(t) + ∆T [a2(t) − µ2u2(t)]
q3(t + 1) = q3(t) + ∆T [a3(t) − µ3u3(t)]
q4(t + 1) = q4(t) + ∆T [µ1u1(t) + µ5u5(t) + µ8u8(t) − µ4u4(t)]
q5(t + 1) = q5(t) + ∆T [α2,5µ2u2(t) + α3,5µ3u3(t) − µ5u5(t)]
q6(t + 1) = q6(t) + ∆T [α4,6µ4u4(t) − µ6u6(t)]
q7(t + 1) = q7(t) + ∆T [α4,7µ4u4(t) − µ7u7(t)]
q8(t + 1) = q8(t) + ∆T [α2,8µ2u2(t) + α3,8µ3u3(t) − µ8u8(t)]
q9(t + 1) = q9(t) + ∆T [α4,9µ4u4(t) − µ9u9(t)]
q10(t + 1) = q10(t) + ∆T [α4,10µ4u4(t) − µ10u10(t)]
q11(t + 1) = q11(t) + ∆T [α4,11µ4u4(t) − µ11u11(t)]
q12(t + 1) = q12(t) + ∆T [µ6u6(t) + µ9u9(t) − µ12u12(t)]
q13(t + 1) = q13(t) + ∆T [µ7u7(t) + µ10u10(t) − µ13u13(t)]
q14(t + 1) = q14(t) + ∆T [µ11u11(t) − d1(t)]
q15(t + 1) = q15(t) + ∆T [µ12u12(t) − d2(t)]
q16(t + 1) = q16(t) + ∆T [µ13u13(t) − d3(t)]

(1)

where

∆T is the sampling time;

qi(t) ≥ 0 is a queue length of containers waiting to be processed (in TEU), i = 1, . . . , 16;

αi,j ≥ 0 is a sharing percentage from the queue i to the queue j; recall that
∑

j αi,j = 1 ∀i;

ai(t) ≥ 0 (in TEU/h) is an arrival rate of containers, i = 1, 2, 3;

di(t) ≥ 0 (in TEU/h) is a departure rate of containers, i = 1, 2, 3;

µi ≥ 0 (in TEU/h) is a container handling capacity, i = 1, . . . , 13;

ui(t) ≥ 0 is a control variable, i = 1, . . . , 13.

The parameters µ1 and µ3 denote container unloading rates of the cranes from ships and
trains, while µ2 is relevant to the processing rates of arriving trucks at the gate. µ4 refers
to containers handling towards the ship in the quay, µ5 and µ8 containers handling towards
the ship in the yard, µ6 and µ9 towards trucks in the yard , µ7 and µ10 towards rail in the
yard. Finally, the parameters µ11 and µ13 denote container loading rates on ships and trains,
whereas µ12 is associated with the waiting time of outgoing trucks at the gate. It is to be noted
that queues q8, q9 and q10, standing for containers that need to be opened and worked in the
yard, are represented with the same equations used for queues q5, q6 and q7 which, on the
contrary, are for handled containers only. As a matter of fact, their difference is only modelled
assigning to the container handling capacity, that is µi, a greater value for the former queues
than for the latter, in order to represent the fact that opening and working a container need
more time.

To sum up, in the proposed model, the queue lengths qi(t), i = 1, . . . , 16, t ≥ 0 represent the
state variables, whereas ui(t), i = 1, . . . , 13, t ≥ 0 represent control variables. The constraints

Le Gosier, Guadeloupe, June 13-18, 2004



TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis 5

on the positivity of both state variables and control inputs are obvious, but some additional
requirements are necessary, i.e.,

ui(t) ≤ 1, i = 1, . . . , 13, ∀t (2)

qi(t) ≤ qimax, i = 1, . . . , 16, ∀t (3)

q5(t) + q6(t) + q7(t) ≤ Ymax, ∀t (4)

q8(t) + q9(t) + q10(t) ≤ Wmax, ∀t (5)

µiui(t) ≤ qi(t), i = 1, . . . , 13, ∀t (6)

Constraints (2) enable to account that no more than the maximum handling capacity is avail-
able. Constraints (3) model the obvious fact that the space in the terminal is limited. In
particular, constraints (4) and (5) are necessary for representing both the limited space in
the yard and the separation, in the yard, between containers to be opened and worked and
containers to be handled only. Constraints (6) impose that containers leaving the queue i are
less than or equal to those stocked in the queue itself.

3 The control scheme

A discrete–time receding–horizon (RH) control scheme [1] is here proposed and defined as
follows. First of all, define the finite-horizon (FH) cost function as

JFH(q(t), u(t, t + N − 1)) =
t+N−1∑

j=t

1T q(j), t ≥ 0 (7)

where q(t)
4
= col (qi(t), i = 1, . . . , 16) is the state vector, u(t)

4
= col (ui(t), i = 1, . . . , 13) is the

control vector, u(t, τ)
4
= col (u(t), . . . , u(τ)) , 1

4
= col (1, 1, . . . , 1) , and N is a positive integer

corresponding to the length of the control horizon. Cost function (7) is very simple with respect
to other approaches (see, as instance [3]); in particular, the objective is the minimization of
the queue lengths and, then, of the total transfer delay in the terminal.

Then, we can state the following problem

Problem 1. At a generic time instant t and with reference to the state q(t), find the FH
optimal feedback control sequence {u(t)FH◦

, . . . , u(t + N − 1)FH◦

, t ≥ 0} that minimizes cost
(7) subject to (1), (2), (3), (4), (5), (6).

Problem 1 has the structure of a linear mathematical programming problem that can be
optimally solved by Simplex algorithm (and, thus, by standard mathematical programming
software tools). Then, thanks to the RH mechanism, once the solution of Problem 1 has been
achieved, only the first optimal FH control function (i.e., the one corresponding to j = t ) is
actually applied to the system. This means that

u(t)RH◦ 4
= u(t)FH◦

, ∀ t ≥ 0 (8)

and, more clearly, the RH control mechanism corresponds to the solution of the following
problem
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Problem 2. At every time instant t ≥ 0 , find the RH optimal control law u(t)RH◦

as the
first vector of the control sequence u(t)FH◦

, . . . , u(t + N − 1)FH◦

, solution of Problem 1 for
the state q(t) .

The effectiveness of the proposed control scheme has been tested using real data relevant to a
container terminal of an Italian port. To this end, a simulative tool implementing the control
scheme has been realized by interfacing Matlab 6.5.1 framework with Lindo 6.1 mathematical
programming software. More specifically, the RH mechanism working in Matlab uses the
Lindo optimization kernel to solve, at every time instant, the current instance of Problem 1.
The interface between the two software frameworks is developed by means of the high level
interface tools Lindo API 2.0.
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