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1  Introduction 

In an urban transit system where the service is perceived in terms of frequency of the different 
lines, the mathematical description of the route choice strategy is not trivial, because the wait at 
the stop, as pointed out in many studies in the last 30 years, is a complex phenomenon which 
requires a specific analysis (e.g. Chriqui and Robillard [1975], Marguier [1981], Gendreau [1984], 
Spiess [1984]). In order to develop an effective model for planning the service, it is very 
important to define a representation of the wait at transit stops which is at once consistent with 
users’ behaviour, mathematically sound and practically usable within the more general 
assignment models. 
This is the reason that has induced us to rethink globally to the wait problem, by analyzing the 
stochastic process of vehicle and passenger arrivals at transit stops and the relations among them, 
without assuming as given facts some hypotheses that are usually adopted. Indeed, some works 
written during the 80’s [Marguier, 1981; Gendreau, 1984; Marguier and Ceder, 1984] already 
pointed out that some modelling choices are not easily justifiable, although often utilized in the 
following years. 
 
 
† Our colleague Stefano Pallottino sadly passed away on April the 11th. 
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2  Modelling assumptions 

In order to address the wait problem at a transit stop served by one or many lines, we have to 
introduce several simplifying hypotheses relative to three distinct spheres: the relations among 
vehicle arrivals of different lines and passenger arrivals, the relations among vehicle arrivals of 
the same line, the users’ knowledge of the network and of its performances. In the following we 
present briefly the assumptions on which we will base our mathematical framework, referring to 
Gentile, Nguyen and Pallottino [2003a, 2003b] and Billi [2003] for further details about the 
modelling choices made and their consequences. 
 
With reference to the first sphere, we assume that the vehicle arrivals of different lines at the stop 
are statistically independent, and that the same is true for the passenger arrivals with respect to 
vehicle arrivals. 
 
With reference to the second sphere, the analysis of the stochastic process of the vehicle arrivals 
of a same line at a given stop induces to introduce some assumptions that, however, are perfectly 
justifiable with respect to the physical phenomenon. In Billi [2003], the hypotheses made on the 
headway probability distribution between two successive vehicles are made explicit (among these, 
also the possible absence of a probability density function). The form that seems to be more 
appropriate to represent the headway probability density function for a given line ℓi is the Gamma 
function with positive integer parameter mi (also called Erlang function), which takes into 
account the degree of service regularity [Larson and Odoni, 1981]. From this is derived the 
probability density function of the waiting time denoted by fi(w): 

( )1

0

e , if( ) !
0, otherwise;

i
i i

km
i im w

i
i k

m w
wf w k

−
−

=


≥= 




∑λ λ
λ 0;  

where λi is the frequency of line ℓi, that is the inverse of the headway expected value. 
A physical explanation of parameter mi associates the passage time of a given vehicle with the 
passage times of the mi previous vehicles: after mi consecutive passages there is a loss of memory 
within the arrival process. If we set mi = 1, the Erlang function reduces to the exponential 
distribution (total absence of memory within the arrival process); the opposite case is found when 
mi tends to plus infinity, obtaining the uniform distribution (regular vehicle passages however 
long is the arrival sequence). 
 
With reference to the third sphere, in the following we will consider users that perceive the 
sequence of vehicle arrivals of each line only in terms of its frequency and level of regularity, and 
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that know relatively well the network topology and the transit stop locations. Moreover, we will 
assume that each user waiting at a stop is able to evaluate with sufficient accuracy, for each line ℓi, 
serving that stop, the expected value si of the travel time to reach its destination once boarded the 
line, which we will utilize as a simplified measure of generalized cost. 
 
Finally, we assume that each user is able to board any vehicle that he chooses to ride, suffering in 
case the cost of discomfort as a function of the on-board passenger density [Nguyen and Pallottino, 
1988]. 

3  Behavioral hypotheses 

Each user is a rational decision maker doing his choices with the aim of minimizing his own 
generalized cost. In a static model such as that we are referring to, the choice of a user is made 
before the beginning of the trip and implies the iterated choice sequence of the stop to reach on 
foot where to wait, of the lines to board and, for each of them, of the stop where to alight. The 
classical representation of this kind of choice is a hyperpath connecting the origin of the trip to its 
destination and having the diversion points in the stop nodes through the waiting hyperarc 
[Nguyen and Pallottino, 1998]. Key elements of the hyperpath are the weights associated with the 
branches of each waiting hyperarc, that represent the probability of boarding a vehicle of the 
different lines of that specific line set, conditional on having reached that stop. 
 
Let us consider then a single transit stop, a set L of lines serving it, and a user that during his trip is 
there waiting to board one or more lines belonging to L in order to reach his destination. The 
probability of boarding line ℓi ∈ L measures the chance that a vehicle of such line is the first one 
arriving at the stop which is perceived as attractive by the user during his waiting process, in the 
sense that it is convenient to board that vehicle instead of keep waiting. 
 
Note that, differently from what it is usually assumed in the literature, in this paper we do to 
conceive in principle the attractive set as a collection of lines that are considered always attractive 
by the user during the entire waiting process. Indeed, in general we assume that, before starting 
his trip, the user has already defined the lines of L he wishes to board and, for each of them, the 
period of his waiting process where he considers the line to be attractive. In other words, we 
assume that the attractive set of a user is defined as a function of the time t elapsed form his arrival 
at the stop waiting without success; for this reason we will call it dynamic set and denote it by D(t), 
defined for 0 ≤ t ≤ uD, where uD is the maximum waiting time, i.e. the first instant when with 
certainty at least one vehicle has arrived at the stop while considered attractive (eventually,          
uD = +∞). 
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In the behavioural model we take into consideration the time spent by the user waiting at the stop 
without any attractive arrival; this time is an information that the user acquires during the wait and 
that influences the perception of the expected remaining waiting time of each line. For example, 
let us assume that line ℓi is perfectly regular ( fi(w) is the uniform distribution function) and has 
headway ui = 20 min and line time si = 30 min. When the user reaches the stop and starts waiting, 
the expected value of the travel time is 10 + 30 = 40 min. After 10 min waiting, the expected value 
of the remaining waiting time is 5 min and the remaining travel time has decreased to 5 + 30 = 35 
min (instead, the total travel time has increased, because to the 35 min we have to add the 10 min 
already waited). 

4  Properties of the dynamic set 

Let D(t), 0 ≤ t ≤ uD, be the dynamic set which has been defined “a priori” by the user. A remaining 
time function RTD(t), 0 ≤ t ≤ uD, is associated with D(t), expressing for each instant τ ∈ [0, uD] the 
time RTD(τ) that remains to wait and to ride in order to reach the destination, given that no 
attractive arrival has occurred during the interval [0, τ). The condition defining the attractivity of 
a line ℓi at time τ is given by: 

( )i Ds RT≤ τ ; (1) 

in this case, in fact, it is more convenient to board an arriving carrier of the line than to keep 
waiting at the stop, while in the opposite case it is not convenient to board. We say that D(t) is 
instantaneously attractive at time τ if it is constituted by all lines ℓi ∈ L that satisfy condition (1); 
moreover D(t) is globally attractive if and only if it is instantaneously attractive for each                  
τ ∈ [0, uD]. 
 
In [Gentile, Nguyen and Pallottino, 2003b] it is shown that, assuming the monotonicity of the 
remaining waiting time of each line (that is, when the time spent waiting in vain at the stop 
increases, the remaining waiting time of each line does not increase), then the remaining time 
function of a globally attractive dynamic set is monotonically not increasing. From this property 
of monotonicity derives that, if a line ℓi ∈ L is attractive, it is such for a time interval [0, ti], with    
0 < ti ≤ uD (a line which is not attractive at time τ = 0 is never attractive). Moreover, the globally 
attractive dynamic set exists, is unique and varies (reducing itself) a finite number of times. It is 
defined, by construction, as: 

( ) { : ( )}, 0i i DD L s RT= ∈ ≤ ∀ ≤ ≤l Duτ τ τ . (2) 

Without loss of generality, let us consider that the lines are ordered based on their travel times and 
that these are different from each other, that is s1 < s2 < … < sn, with n = |L|; moreover, we will 
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denote by Lj = {ℓ1, ℓ2, … , ℓj} the set of the j faster lines in terms of travel times. Consider the time 
tj when RTD(tj) = sj. Because RTD(t) is a monotonically non increasing function, from (2) we have 
that D(tj) = Lj and that there exists a time tj+1 < tj at which RTD(tj+1) = sj+1 (or tj+1 = 0 and                
RTD(0) ≤ sj+1). In the time interval (tj+1, tj] spent waiting (or [0, tj] if tj+1 = 0) the dynamic set does 
not change (we say that it is “static”). Moreover, the dynamic of D(t) is described at the most by n 
time intervals where D(t) is static. In general, we denote by Lq the set of lines that are attractive 
during the whole definition interval [0, uD] and by Lr, r ≤ q, the set of lines that are attractive at 
time τ = 0; thus the lines ℓr+1, …, ℓn are never attractive. 

5  Travel time expected value and line probabilities 

In [Gentile, Nguyen and Pallottino, 2003b] is developed the theoretical framework required to 
formulate the function RTD(t) and the probabilities to board the different lines. Here we provide 
only the most important elements; let ui denote the upper bound of the definition interval relative 
to the function fi(w) for line ℓi (+∞ in the case of unbounded distribution); while Fi(w) is the 
cumulative distribution function of the waiting time. In particular, we are interested in its 
complement: 
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The probability density function of the waiting time of line ℓi, conditional to having already 
waited in vain until time τ is: 
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Recalling the meaning of the instants tj for the different attractive lines, let us consider the case 
when the user has waited in vain until time τ, with tj+1 < τ ≤ tj, when the lines ℓ1, …, ℓj are 
attractive, while the lines ℓj+1, …, ℓr are not anymore attractive. If first attractive arrival occurs at 
time w , the (density of) probability γi 

j(w|τ) that it is relative to a vehicle of line ℓi, with i ≤ j, is 
given by: 
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On this basis, the share of travel time expected value relative to the case where the first attractive 
arrival occurs within the time interval [τ, tj], is given by: 
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Knowing that RTD(tj) = sj, by means of the latter formula it is possible to provide a “local” 
description of the remaining time function RTD 

j(t) relative to the generic interval (tj+1, tj] where 
the static set of attractive lines is Lj: 
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In the above formula it is to be intended tq = uD; moreover, in the case of unbounded headways, we 
have in general q = 1, except for the case of exponential distribution where the classical results are 
valid and replace the above formulation.  
 
Equation (4) expresses the remaining travel time as the sum of its share Ψj(τ, tj), relative to the 
case where the first attractive arrival occurs within the time interval [τ, tj], and the complementary 
share sj, opportunely weighted by the probability that the user has to wait in vain until time tj. 
Using (4) it is possible to verify if line ℓj+1 is attractive for at least a part of the waiting process. In 
fact, it is sufficient to check that RTD 

j(0) ≤ sj+1. In this case, line ℓj+1 is never attractive, that is          
r = j and tj+1 = 0. Otherwise we determine the time tj+1 such that RTD 

j(tj+1) = sj+1, and then we have 
RTD(τ) = RTD 

j(τ), for each τ∈(tj+1, tj]. The expected travel time is given by: 
ET = RTD(0); 
while the probability of utilizing the vehicles of line ℓi ∈ Lr is given by: 

1
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Clearly πi = 0 for the non attractive lines ℓi, i = r + 1, …, n. 

6  Computational aspects 

The local form of RTD 
j(t) suggests a “backward construction” of the remaining time function. The 

determination of q can be achieved starting from q = 1 and updating q with j+1 whenever during 
the backward construction of the remaining time function we find tj+1 ≥ uj+1. 
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The above formulation requires in general the computation of many integrals, which might be 
somewhat time consuming unless introducing approximations whose propagation is difficult to 
control. In the case of Erlang functions this can be avoided, noting that all the functions to be 
integrated are a sum of different terms whose generic form is: 
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where α and β are real parameters, while v is a nonnegative integer parameter and c in an additive 
constant. On this basis it is possible to determine the expected value of the travel time and the line 
probabilities through computations that are easy to organize in order to reduce the number of 
operations and to control the propagation of approximation errors. This approach is inspired to the 
one proposed by Gendreau [1984]. 

7  Necessity of a dynamic model 

Consider the following example with only two lines whose waiting time has a uniform 
distribution: u1 = u2 = 50 min, s1 = 30 min and s2 = 50 min. Applying the proposed model we 
obtain the following globally attractive dynamic set: D(t) = L2 for 0 ≤ t ≤ 10 and D(t) = L1 for       
10 < t ≤ 50, with an expected value of the travel time RTD(0) = 54.53 and line probabilities              
π1 = 0.82, π2 = 0.18. 
 
Applying instead the classic static approach, which is valid only for exponential distribution, we 
obtain L1 as optimal attractive set with a travel time expected value of 55 (the travel time expected 
value of the set L2 is 56.67). However, in this case at the beginning of the wait the user renounces 
to board the vehicles of the second line, although this would be convenient in terms of travel time; 
that is, the assumption of passenger’s rational behaviour fails. 

8  Conclusions 

We have described a new, well founded, model for the line choice at the stops of an urban transit 
network, where it is possible to take into account the level of service regularity for each line and 
for each one of its segments. We have also suggested a computational technique that guaranties 
the efficiency of the model and the possibility of plugging it into any transit assignment model 
based on hyperpaths. 
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