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1 Introduction

Dynamic pricing has become very important in recent years due to its wide range applicability
in a variety of industries. The rapid development of information technology, the Internet and
E-commerce as well as the success of the Direct-to-Customer (DTC) business model, have
had a strong influence on the development of dynamic pricing, as they provide a company
with the flexibility of dynamically changing the prices of its products. Dynamic pricing has
been extensively studied by researchers from a variety of fields. The paper by McGill and van
Ryzin [6], and the references therein, provide a thorough review of revenue management and
pricing models. Elmaghraby and Keskinocak [4] review the literature and current practices in
dynamic pricing in industries where capacity or inventory is perishable and fixed in the short
run. Yano and Gilbert [8] review models for joint pricing and production under a monopolistic
setup.

In this paper, we consider a make-to-stock fluid model. Make-to-stock is the standard for a
large number of industries such as retail. In addition, Avram, Bertsimas and Ricard [1] and
Bertsimas and Paschalidis [3] show that fluid models provide good production and inventory
policies in a variety of settings. However, the models considered in these papers do not address
pricing. The model we propose and study in this paper addresses joint pricing and inventory
management. We borrow ideas, modeling techniques, and algorithms from the transportation
area.

A key and novel characteristic of the model in this paper is that instead of considering a
traditional demand model that assumes an a priori relationship between price and demand
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with fixed parameters, we consider a model that relies on how price and level of inventory
affect the time a unit of product remains in inventory. We refer to this time spent in inventory
as delay or sojourn time. The impetus of considering a delay model is motivated from: (1)
The widespread recording - particularly in information technology enabled industries - in data
warehouses of entrance times and exit times of products in inventory systems, which makes
this delay data available. (2) The delay data being internal and easily extractable from data
warehouses, as opposed to demand data, which is external, and therefore not controlled by the
company. (3) In an environment where price does not vary a lot with time, the estimation of
the relationship between price and demand, which is used as an input to the pricing models in
the literature, can be quite inaccurate. However, because of the moderate to high variability of
inventories with time, the estimation of the relationship between inventory level and sojourn
time can be more accurate. A few companies such as Amazon.com are currently using sojourn
time information to control their inventories and adjust their pricing policies. Furthermore,
we believe that the new and fast growing technology of Radio Frequency IDentification chips
(RFIDs) -that is projected to dominate the manufacturing and retail sectors within the next
five years- will provide a strong motivation and a large number of applications for this type of
models.

In this paper, we consider (i) a multi-product and dynamic environment, (ii) a dynamic produc-
tion capacity shared amongst all products, and (iii) the presence of competition. In particular,
the goals of this paper are the following:

• We borrow the Dynamic Network Loading Model from traffic modeling to introduce a
general model of dynamic pricing and inventory management in logistical and supply
chain systems.

• The model is a general continuous-time fluid dynamics model that jointly considers
production, inventory and pricing decisions. It considers a price inventory relationship,
where the pricing parameters are not fixed but rather are an output of the model.

• We establish that the delay approach we propose in this paper directly connects with
the traditional demand approach.

• In order to study the efficient solution of the general model, we consider a discretized
version of the model and illustrate its efficient solution.

• We incorporate competition, analyze the best response model solved by each competing
retailer and establish sufficient conditions for the existence of a Nash Equilibrium. We
further propose an iterative relaxation algorithm that allows us to compute an equilib-
rium policy.

2 Notation and Formulation of the Dynamic Pricing Model

We consider a multi-product inventory system that we represent by a directed network with
two nodes O and D, and n links joining these two nodes. Node O represents the arrival of a
product to the warehouse and node D represents the delivery of this product to the customer.
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Each link joining O and D corresponds to a distinct product that the company is selling and
is indexed by i, i ∈ {1, ..., n}.

We first assume that the company under study is a Stackelberg leader, and as a result is a
price setter. Therefore, competitors’ prices are functions of the price of the company under
study. These functions can be estimated in practice using regression on the competitors’ prices
and the prices of the company under study. Subsequently, in the paper, we consider a more
general competitive setting where several retailers compete, each optimizing their profits that
depend on competitors’ policies (i.e., retailers solve a Best Response Problem simultaneously).
We establish existence of Nash Equilibrium production and pricing policies for the competing
retailers.

Note that this model is similar to the Dynamic Network Loading fluid model studied in the
context of transportation (see for example, Bernstein and Friesz [2] and the references therein,
Wu et al. [7]). This model is often referred to as the DNL Model.

Inputs of the Dynamic Pricing Model

Link variables:
CFR(t) = Shared production capacity rate at time t. pc

i(pi(.)) = (pc
i,j(pi(.)), j ∈ {1, ..., J(i)}),

vector of price functions of companies competing on product i. Di(Ii) = Ti(Ii, pi, p
c
i ) : product

sojourn time function, that is the total time a newly produced unit of product i spends in the
inventory system, given an inventory Ii, a unit price pi(Ii), and a set of competitors’ price
functions pc

i (.). ci(t) : production cost of product i at time t. hi(t) : inventory cost of product
i at time t.

Time variables: [0, T ] : production period.

Outputs of the Dynamic Pricing Model

Link variables:
Ui(t) : cumulative production flow of product i during interval [0, t] ui(t) : production flow
rate of product i at time t. Vi(t) : cumulative sales flow of product i during interval [0, t]; vi(t)
: sales flow rate of product i at time t; Ii(t) : inventory (number of units of product) i at time
t; pi(Ii(t)) : sales price of one unit of product i given an inventory Ii(t); si(t) : exit time of a
production flow of product type i entering at time t (si(t) = t + Di(Ii(t))).

Time variables: [0, T∞] is the interval of time from when the first unit of product is produced
to the first instant all products have been sold.

The study of the general pricing model does not require any assumption on the functional
form of the unit price function pi(Ii). Instead, the unit price function is an output of the
model. However, in this paper, when we analyze a discretized version of the pricing model, we
assume that the unit price function pi(.) is linear as a function of the inventory. Also, notice
that the unit price function pi(Ii(t)) depends on time only through the time-dependence of
the inventory Ii(t).

Le Gosier, Guadeloupe, June 13-18, 2004



4 TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis

We consider a sojourn time function Di(Ii(t)) = Ti(Ii(t), pi(Ii(t)), p
c
i (pi(Ii(t)))) that represents

the total time it takes to sell, at time t, a newly produced unit of product i, given a level of
inventory Ii(t), a unit price pi(Ii(t)) and a set of competitors’ prices pc

i(pi(Ii(t))). Notice
that the product sojourn time function Di(Ii(t)) resembles the time to traverse a link in a
transportation network.

Model Formulation

The model in this paper includes the added complexities that it considers a shared production
capacity environment, it incorporates the pricing component, and finally, it is placed in the
framework of dynamic optimization.

Before formulating the model, we describe the setting and the assumptions. We consider a
competitive setting where:
B1) There are multiple products.
B2) The total production capacity rate is bounded by a non-negative capacity flow rate
function CFR(.).
B3) There is no substitution between products.
B4) The company under study faces holding costs but no setup costs.
B5) The demand is deterministic.
B6) The unit price pi(.) depends on the inventory Ii.

The study of the general pricing model does not require any assumption on the functional form
of the unit price function pi(.). Instead, the unit price function is an output of the model.
Notice that Assumption B6 allows us to consider a variety of models for the unit price functions.

Examples of such models include linear functions of the type pi(Ii) = pmax
i −

pmax
i

−pmin
i

Ci
Ii as

well as nonlinear functions of the type pi(Ii) =
pmax

i

(
pmax
i

pmin
i

−1)
Ii
Ci

+1
, where Ci denotes the inventory

capacity, pmax
i the maximum allowable price, and pmin

i the minimum allowable price.

Dynamic Pricing Model:

Maximize
n∑

i=1

∫ T∞

0
[pi(Ii(t))vi(t) − ci(t)ui(t) − hi(t)Ii(t)]dt (1)

s.t.
dIi(t)

dt
= ui(t) − vi(t), ∀i ∈ {1, ..., n} (2)

Vi(t) =

∫
ω∈W

ui(ω)dω, ∀i ∈ {1, ..., n}, where W = {ω : si(ω) ≤ t} (3)

Ui(0) = 0, Vi(0) = 0, Ii(0) = 0, ∀i ∈ {1, ..., n}

n∑
i=1

ui(t) ≤ CFR(t), (4)

ui(.) ≥ 0, ∀i ∈ {1, ..., n}, CFR(.) ≥ 0. (5)

Remarks:
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• The objective of the company is to maximize its profits. That is, by subtracting produc-
tion costs and inventory costs from sales.

• The link dynamics equations (2) express the change in inventory at time t as the difference
between the production and the sales flow rates.

• The flow propagation equations (3) describe the flow progression over time. Note that
a production flow entering link i at time t will be sold at time si(t) = t + Di(Ii(t)).
Therefore, by time t, the cumulative sales flow of link i should be equal to the integral
of all production inflow rates which would have entered link i at some earlier time ω and
would have been sold by time t.

• Furthermore, if the product exit time functions si(.) are continuous and satisfy the
strict First-In-First-Out (FIFO) property, then the flow propagation equations (3) can
be equivalently rewritten as

Vi(t) =

∫ s−1

i
(t)

0
ui(ω)dω, ∀i ∈ {1, ..., n}. (6)

Notice that s−1
i (t) is the time at which a unit of product i needs to be produced so that

it is sold at time t. Furthermore, under the strict FIFO condition, a unit of product i,
entering the queue at time t, will be sold only after the units of product i, that entered
the queue before it, are all sold. In mathematical terms, this is equivalent to the product
exit time functions si(.) being strictly increasing. As a result, defining the production
time s−1

i (t) makes sense.

• In general, the DPM Model is a continuous-time non-linear optimization problem. The
non-linearity of the model comes from the unit price as a function of the inventory, as
well as the integral equation (3). In this formulation, the known variables are the product
sojourn time functions Di(.), the production and inventory costs ci(.) and hi(.), and the
total capacity flow rate function CFR(.). The unknown variables we wish to determine
are ui(t), vi(t), Ui(t), Vi(t) and Ii(t). Notice that integral equation (3), which connects
the production to the sales schedules through the delays incurred in the system due to
price and inventory, makes this problem hard to solve.

In Kachani and Perakis [5], we investigate when the FIFO property holds. We examine condi-
tions on the product sojourn time functions Di(.) and on the production flow rates ui(.). We
also establish the existence result below. This result illustrates that under general assumptions,
the DPM Model possesses an optimal solution.

Theorem 1 [5] Assume that the following conditions hold:
(E1) The price inventory functions pi(Ii) are continuously differentiable and bounded from
above by scalars pmax

i .
(E2) The product sojourn time functions Di(.) are continuously differentiable, and there exist
two non-negative constants B1i and B2i such that for every inventory level Ii, 0 ≤ B1i ≤
D′

i(Ii) < B2i.
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(E3) The shared capacity flow rate function CFR(.) is Lebesgue integrable, non-negative and
does not exceed min1,...,n

1
B2i−B1i

.
Then, the Dynamic Pricing Model has an optimal solution.

Remark: This theorem suggests that the maximum variation of the delay in terms of the
inventory connects with the total production rate for all products. As a result, when the
shared capacity (which is an upper bound on the total production rate) is small (or large)
and the maximum variation of the delay in terms of the inventory is large (or small) then the
Dynamic Pricing Model has a solution.

In this paper, we study a discretized version of the model which gives rise to a quadratic
optimization problem. We illustrate how we can determine both the optimal production levels
and the optimal pricing policies. We present an efficient iterative relaxation algorithm to not
only solve this problem but also solve the more general problem that incorporates competi-
tors’ behavior. This iterative relaxation algorithm utilizes equilibrium techniques from traffic
assignment and fictitious play from game theory to compute a Nash Equilibrium production
and pricing policies.

References

[1] F. Avram, D. Bertsimas, and M. Ricard. Optimization of Multiclass Fluid Queueing
Networks: a Linear Control Approach. Proceedings of the IMA, in F.P. Kelly and R.
Williams (eds.), Springer-Verlag, pages 199–234, 1995.

[2] D. Bernstein and T. Friesz. Analytical dynamic traffic assignment models. Chapter 11 in
Handbook of Transport Modelling (D. Hensher and K. Button, editors), Pergamon, pp.
181-195, 2001.

[3] D. Bertsimas and I. Paschalidis. Probabilistic Service level Guarantees in Make-to-Stock
Manufacturing Systems. Operations Research, 49(1):119–133, 2001.

[4] Elmaghraby, W., P. Keskinocak, Dynamic Pricing in the Presence of Inventory Con-
siderations: Research Overview, Current Practices and Future Directions, to appear in
Management Science.

[5] S. Kachani and G. Perakis. A Fluid Model of Pricing and Inventory Management for
Make-to-Stock Manufacturing Systems. Submitted for Publication, 2002.

[6] J. McGill and G. van Ryzin. Focused Issue on Yield Management in Transportation.
Transportation Science, 33(2), 1999.

[7] J. H. Wu, Y. Chen, and M. Florian. The Continuous Dynamic Network Loading Prob-
lem: A Mathematical Formulation and Solution Method. Transportation Research B,
32(3):173–187, 1995.

[8] Yano, C., S. Gilbert, 2004. Coordinated Pricing and Production/ Procurement decisions:
A Review, Managing Business Interfaces: Marketing, Engineering and Manufacturing
Perspectives, Amiya Chakravarty and Jehoshua Eliashberg (Eds.), Kluwer Academic Pub-
lishers.

Le Gosier, Guadeloupe, June 13-18, 2004


