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1 Introduction

Revenue management involves the application of quantitative techniques to improve profits
by controlling the prices and availabilities of various products that are produced with scarce
resources. The best known revenue management application occurs in the airline industry,
where the products are tickets (for itineraries) and the resources are seats on flights. In almost
every instance of published work, the starting point of the analysis is some set of assumptions
regarding an underlying stochastic or deterministic demand process. With these assumptions
in hand (and assumed to be correct), most papers proceed to “solve” the model and derive
“optimal” operating policies. In the airline context, such a policy usually details which types
of tickets are available at which times, and under which circumstances.

However, the situation faced by revenue managers in practice is different from published work
in at least two key regards: assumptions may be incorrect, and model parameters are not
known. It is widely understood that the forms of the demand models used in practice are not
likely to be correct—one simply cannot construct practical models that take into account all
the trade-offs considered by customers. Typically the parameters of the chosen models are
estimated with available data, but even if the data are good and a good forecasting method
is used, it is likely that parameters are being estimated for an incorrect model. In practice,
there is an iterative process whereby a control (e.g., protection levels) is enacted, sales occur, a
flight departs, and parameter estimates are updated based upon observed data. The updated
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estimates are then used to choose a new control for the next instance of flight, and so on.
An important question is what can happen if the airline uses a good forecasting method,
but the chosen controls are based on an incorrect model, specifically, a model with erroneous
assumptions regarding customer behavior.

We study a stylized model of the situation described above, and show what can occur in certain
cases when an airline makes incorrect modeling assumptions. In particular, if the airline uses
the standard Littlewood/expected marginal seat revenue (Littlewood-EMSR) technique to set
protection levels, and if it estimates “the probability distribution of high-fare demand” using
past high-fare sales (truncated or untruncated) without correctly taking into account how
customer behavior depends on the controls (the protection levels), then the protection levels,
high-fare sales, and revenues may “spiral down” over time.

A quick description of the spiral down effect is as follows. Suppose that there are two classes
of tickets and that customers are flexible, that is, they are willing to buy either low-fare or
high-fare tickets, but they will buy the low-fare tickets if both are available. Suppose also
that the airline decides how many seats to reserve for high-fare tickets based on past sales of
high-fare tickets, while neglecting to account for the fact that availability of low-fare tickets
will reduce sales for high-fare tickets. Then, if more low-fare tickets are made available, low-
fare sales will increase and high-fare sales will decrease, resulting in lower future estimates of
high-fare demand, and subsequently lower protection levels for high-fare tickets and greater
availability of low-fare tickets. The pattern continues, resulting in a spiral down of high-fare
sales, protection levels, and revenues. In this paper, we describe this effect by establishing
limit theorems that give conditions under which the protection levels converge, in many cases
downward. Boyd et al. (2001) have used simulation to demonstrate this spiral-down effect,
which is known to some practitioners.

The fundamental issue is that the optimization model used by the decision maker is incorrect.
In addition, not only does the incorrect optimization model produce suboptimal decisions
(which is not surprising), but the decisions produced can become worse as the revenue manager
attempts to refine the incorrect model with observed data. The combination of an incorrect
optimization model with parameters that are adjusted based on data, and data that are affected
by the controls produced by the incorrect optimization model, can cause the optimization
model and the resulting controls to deteriorate as the forecasting-optimization process evolves.

2 A Single Problem Instance

Consider a single flight with capacity c. Suppose that there are class-1 and class-2 tickets for
sale. The price of class-i tickets is denoted with fi. Suppose that f1 > f2 > 0. If the airline
sells s1 tickets in class 1 and s2 tickets in class 2, then it will receive revenue r = f1s1 + f2s2.

Next we address the demand for the tickets. The notion of customer demand for different
products is central to revenue management. At the same time, the research in revenue man-
agement has not yet produced a widely accepted model of demand. We do not propose a
particular model of demand. Rather, the purpose of our work is to illustrate some effects that
can occur if the demand model used by the revenue manager does not accurately describe the
customer behavior.
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One type of demand model specifies, for each given set of alternatives, the probability that
a customer chooses each alternative in the given set. Most revenue management models
published in the literature do not use such models of individual customer behavior, but rather
more aggregate models of demand. (For an example of a model that does incorporate individual
customer behavior, and for additional references, see Talluri and van Ryzin 2001.) Models of
individual customer behavior, such as the one referred to above, can be used to obtain aggregate
models of demand. For example, given a stochastic process describing how customers arrive
over time to request products, and a model of individual customer behavior, and a rule or
policy describing how the set of available alternatives changes as the process unfolds, one can
derive the probability distribution of the quantity of each product demanded during the life
of the process. We emphasize that under such a scheme, the probability distribution of the
quantity of each product demanded depends crucially on the policy that determines the set of
available alternatives. Many aggregate demand models that have been used in the literature
do not incorporate this dependence.

In our study, the model of actual demand is an aggregate model that depends on the policy
that determines the set of available alternatives, and the model used by the revenue manager
does not depend on the policy. The revenue manager uses a good forecasting method, but
attempts to estimate a demand model that turns out to be an incorrect model.

Of course, the policy used by the revenue manager should be compatible with the demand
model used by the revenue manager. Next we describe the demand model and the policy used
by the revenue manager in our study, as well as the observed data. Recall the case with a
single flight and two fare classes described above. We assume that the revenue manager uses
the well-known Littlewood-EMSR rule (see, e.g., Littlewood 1972, Belobaba 1989, Wollmer
1992, Brumelle and McGill 1993, or van Ryzin and McGill 2000) to control the availability
of the two alternatives, namely class-1 and class-2 tickets. That is, the policy used by the
revenue manager specifies a protection level � that is chosen by the Littlewood rule as follows.
Suppose that the revenue manager’s demand model has a cumulative probability distribution
H for the demand for class-1 tickets. Then � is chosen to satisfy

� ∈ H−1(γ) (1)

where γ := 1 − f2/f1 and H−1(γ) denotes the set of γ-quantiles of H.

Here, we must emphasize that in the actual demand model, “demand for class-1 tickets” is
not a well-defined quantity because, in general, customers decide what to purchase based on
their own preferences as well as the available set of alternatives. Nevertheless, the revenue
manager bases his decisions on a supposed (and estimated) probability distribution H for the
demand for class-1 tickets and on the well-known Littlewood-EMSR rule. Once the revenue
manager has decided to use the Littlewood-EMSR method, he needs to estimate H based upon
some data. In practice, this data would typically include historical values of class-1 tickets
sales, possibly after some so-called unconstraining to remove effects caused by censored and/or
missing data (see Section 4.2 of Boyd and Bilegan 2003). The data used by the revenue manager
to estimate H consist of values of an “observed quantity” X, that the revenue manager may
call the aggregate demand for class-1 tickets. For the reasons explained above, we assume that
X depends on the chosen parameter �. Let G(�, ·) denote the cumulative distribution function
of the observed quantity X if the booking control process uses protection level �.

We illustrate these ideas with some examples.
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Example 1. Suppose there are three types of customers, namely type a, type b, and type ab
customers. Type a customers buy class-1 tickets only, type b customers buy class-2 tickets
only, and type ab customers buy either class-1 or class-2 tickets, but prefer the cheaper class-2
tickets if they are available. Unlike some models in the revenue management literature, we
impose no conditions on the order of arrival, so that type a, type b, and type ab customer
arrivals may be interspersed. Let Da, Db, and Dab denote the number of type a, type b, and
type ab customers respectively. Let Da(�), Db(�), and Dab(�) denote the number of type a,
type b, and type ab customers respectively who arrive until � ≤ c tickets remain unsold,
and class-2 tickets become unavailable. Suppose that the observed quantity X is equal to
the number of class-1 tickets sold (which is “demand for class-1 tickets” truncated by the
limited capacity). Then, X = Da(�) + min{�, Da − Da(�) + Dab − Dab(�)}, and G(�, x) =
Prob [Da(�) + min{�, Da − Da(�) + Dab − Dab(�)} ≤ x], which depends on �.

Example 2. In this example the demand is the same as in Example 1. However, the observed
quantity X is equal to the number of type a customers who arrive during the time horizon plus
the number of type ab customers who arrive during the time horizon when class-2 tickets are
not available anymore, that is, the number of type ab customers who either purchase class-1
tickets or who arrive when no more tickets are available. Thus, in this example the revenue
manager gets the benefit of the doubt and continues to observe customers even after c tickets
have been sold. Here, X = Da + Dab − Dab(�), and G(�, x) = Prob [Da + Dab − Dab(�) ≤ x],
which also depends on �.

Example 3. This example is the model that usually is associated with the Littlewood rule.
There are only two types of customers, namely type a and type b customers, that is, Dab = 0.
In addition, all type b customers arrive before any type a customers arrive. The observed
quantity X is the number Da of type a customers. Thus, in this example the revenue manager
observes all the type a customers, whether the number of type a customers exceeds the capacity
c or not. Hence X = Da, and G(�, x) := Prob [X ≤ x] = Prob [Da ≤ x], which is independent
of �. In the situation described here, using (1) to choose the protection level is the right thing
to do.

Example 4. In this example the demand is the same as in Example 3. However, in this
example the observed quantity X is the actual sales of class-1 tickets. Thus, in this example,
the actual sales of class-1 tickets is equal to X = min{Da, c − min{Db, (c − �)+}} Hence,
G(�, x) = Prob

[
min{Da, c − min{Db, (c − �)+}} ≤ x

]
, which again depends on �.

3 A Sequence of Problem Instances

In order to describe the spiral-down phenomenon, we consider a sequence of problem instances;
that is, a sequence of booking processes indexed k = 1, 2, 3, . . . of a particular flight, say
an 8am Monday flight from New York to Los Angeles. Initially, suppose that the revenue
manager selects a protection level L0 for flight 1, and subsequently observes quantity X1. The
distribution of the observed quantity X1 for flight instance 1 is G(L0, ·). Based upon what is
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observed, the revenue manager selects a new booking limit L1 for flight 2. The distribution
of the observed quantity X2 for flight 2 is G(L1, ·). The revenue manager continues in this
fashion, getting sequences {Lk} and {Xk}.
As mentioned in the previous section, a typical method for selecting {Lk} is for the airline to
determine an estimate of the distribution of “the demand for class-1 tickets”, and then to use
this estimate as if it were correct (i.e., not an estimate) as input into an optimization scheme,
which results in the protection level Lk being chosen according to Littlewood’s rule (1). That
is, to obtain Lk, the revenue manager obtains an estimate Ĥk based upon observed data and
then chooses Lk ∈ (Ĥk)−1(γ). To provide a formal description of the iterative forecasting
and booking control procedure, we introduce some more notation. Let D denote the space of
distribution functions on R. For problem instance k, we consider a generic update function
φk : D × R

k �→ D that maps the initial forecast Ĥ0 ∈ D of class-1 demand, and the sequence
{Xi}k

i=1 ∈ R
k of observed quantities, to a new forecast Ĥk.

The initial estimate Ĥ0 of the class-1 demand distribution is specified and a protection level
L0 ∈ (Ĥ0)−1(γ) is chosen. For each k ∈ Z+, we assume that

P[Xk ≤ x|Fk−1] = G(Lk−1, x) for all x ∈ R. (2)

Forecasts and protection levels are updated according to

Ĥk := φk(Ĥ0, X1, . . . , Xk) (3)
Lk ∈ (Ĥk)−1(γ). (4)

4 Types of Results Obtained

Due to space constraints, we cannot thoroughly cover our results here. We describe the spiral-
down effect by establishing limit theorems that give conditions under which the protection
levels converge, in many cases downward.

Example 5. The time horizon is 100, and the capacity is c = 100. Class-1 tickets have
price 1, and class-2 tickets have price 0.7. The revenue manager’s demand model is the same
as in Examples 3 and 4. More specifically, suppose that in the revenue manager’s model,
first type b customers arrive according to a Poisson process with rate 1.5 over the interval
(0, 50], and next type a customers arrive according to a Poisson process with rate 1.5 over
the interval (50, 100]. Suppose that the revenue manager’s model is not quite correct, and
in fact type b customers arrive according to a Poisson process with rate 1.5 over the interval
(0, 100/3], type ab customers arrive according to a Poisson process with rate 1.5 over the
interval (100/3, 200/3], and then type a customers arrive according to a Poisson process with
rate 1.5 over the interval (200/3, 100].

Figure 1 shows the objective function for this example, namely the expected revenue as a
function of the protection level. The optimal protection level is 95. The optimal protection
level in the revenue manager’s model is G−1

1 (1 − f2/f1) = 70, where G1 denotes the Poisson
distribution with mean 75. Thus, as expected, the revenue manager’s model would give a
suboptimal solution. However, next we show that the situation can be much worse if the
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revenue manager uses observed data, that depend on the chosen protection levels (where the
dependence is not captured correctly in the revenue manager’s model), to update the protection
levels.
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Figure 1: Example 5: Expected revenue as a function of protection level.

Suppose that the observed quantity X is equal to the number of class-1 tickets sold as in
Example 4. Figure 2 shows how the protection levels spiral down along 10 sample paths from
an initial level of L0 = 100 if the revenue manager uses a stochastic approximation algorithm
to choose Lk. Thus, due to the error in the revenue manager’s model, the protection levels
converge to their worst possible value instead of to the optimal value or some reasonable
suboptimal value. Such disastrous spiral down behavior would be of great concern to any
revenue manager. Figure 3 shows how the expected revenue obtained by the revenue manager
spirals down.
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Figure 2: Example 5: Spiral down of protection levels, shown for 10 sample paths.
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Figure 3: Example 5: Spiral down of expected revenue.
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