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1 Introduction

The objective of vehicle routing problems is to determine the order in which to visit a spa-
tially distributed set of customers. Mainly due to their practical importance and the difficult
challenge they pose, routing problems have received an enormous amount of research atten-
tion. In this paper we focus on the capacitated, distance-constrained vehicle routing problem,
although the proposed method for robust/flexible optimisation is applicable to any vehicle
routing formulation.

The computational complexity of most routing problems has made them an important can-
didate for solution using metaheuristics. Indeed, for most routing problems, metaheuristics
dominate the list of best-performing solution methods. The literature on metaheuristics for
the vehicle routing problem has been thoroughly surveyed by Gendreau et al. (1998). A com-
prehensive comparison of the computational results reported by several approaches, finds that
tabu search approaches dominate the list of successful algorithms, especially the approach
due to Taillard (1993). Recently, Prins (2004) has shown that genetic algorithms can achieve
similar performance as tabu search, when combined with extensive local search.

Standard vehicle routing formulations however, assume that all data concerning customer
demand, travel costs, etc. are known with perfect certainty at design time. For many reasons,
e.g. the uncertainty related to traffic conditions, these assumptions are unwarranted in a large
number of practical situations. As a result, a number of stochastic vehicle routing formulations
have been developed. Common examples of stochastic vehicle routing problems have either
stochastic travel times (e.g. Lambert et al. (1993)) or stochastic demands (e.g. Stewart and
Golden (1983)). In some cases, the list of customers to be visited is stochastic in the sense that
each customer has a certain probability of requiring service and the actual routes can only
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be developed at design time. An approach called a priori routing is developed by Bertsimas
(1992); Bertsimas and Simchi-Levi (1996). Algorithms for stochastic vehicle routing problems
are considerably more intricate than their deterministic counterparts, and the optimal solution
can be found within a reasonable amount of time for very small problems only. For a review
of stochastic vehicle routing formulations and problems, we refer to Gendreau et al. (1996).
Vehicle routing problems in which not all the data are known at planning time are called
dynamic vehicle routing problems. For a recent survey, we refer to Gendreau and Potvin
(1998).

In this paper we develop and apply a framework to find robust and flexible optimisation
of stochastic variants of vehicle routing problems. This framework combines metaheuristic
optimisation with monte-carlo sampling of the stochastic parameters of the problem. The
approach and its advantages over more traditional methods based on stochastic programming
are discussed in section 2. An example application is given in section 3.

2 General framework for robust and flexible optimisation

A minimisation problem can be written as

f(x∗; p) = min
x∈X(p)

f(x; p), (1)

where f is the objective function and p is the set of parameters for the given problem instance.
The optimal solution x∗ should belong to the set of all feasible solutions for this problem
instance (the domain X(p)). If the set of problem data contains some uncertain elements,
we represent this set by π. For a given solution x, the objective function value f(x;π) now
is a random variable that cannot be minimised. Also, the set of feasible solutions X(π) is
stochastic, and as a result the feasibility of a given solution x depends on the realisations of
the stochastic parameters.

A robust solution is characterised by the fact that it has a high quality across the set of potential
realisations of the stochastic parameters of the problem. It is however important to note that
the preferred formalisation of robustness can differ between decision makers. A flexible solution
is one that can be easily adapted to the realisations of the stochastic parameters. Flexibility
implies the existence of some procedure to adapt a solution to the specific outcomes of the
stochastic parameters. We call such a procedure a repair procedure and require of it that
it is several orders of magnitude faster (in the computational sense) than the optimisation
procedure used to find the solution.

Overview Our framework for robust and flexible optimisation can be summarised as follows:

1. Use an optimisation procedure that generates many diverse solutions. Most metaheuris-
tics will do this.

2. Evaluate each solution generated with a robust evaluation function. Perform the following
steps ne times and combine the evaluations into a measure of robustness/flexibility.

(a) Sample the stochastic parameters of the problem for the given solution.
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(b) (Only for flexible solutions) Use the repair procedure to improve the solution.

(c) Calculate the quality of the (repaired) solution

3. Pick the solution that performs best with respect to this robust evaluation function.

Robust evaluation function A typical robust evaluation function has the following form.

f∗(x) =
1

ne

ne
∑

i=1

f(x;Si(π)) (2)

The sampling function S generates a potential outcome of the stochastic data π of the problem.
Si(π) is the i-th sampling of the stochastic problem data. The solution x is evaluated on ne

samples and these evaluations are then combined into f ∗(x)—a measure of the robustness of
x—by taking the average.

If a repair function is used, and a flexible solution is sought, a robust evaluation function is

f∗(x) =
1

ne

ne
∑

i=1

f(R(x; (Si(π))) (3)

I.e., a solution is first repaired using the repair function, before it is evaluated.

Incorporating the decision maker’s risk-averseness If the decision maker is relative
risk-averse, he might prefer to evaluate the worst-case performance of the solution. The robust
evaluation function then becomes

f∗(x) =
ne

max
i=1

f(x;Si(π)).

A measure of the risk associated with a given solution is given by the standard deviation of
the evaluations of the derived solutions, given by

σ∗(x) =

√

√

√

√

1

ne − 1

ne
∑

i=1

[f(x;Si(π)) − f ∗(x)].

Several of these measures of robustness can be calculated for each solution and a solution
can be chosen using a multi-objective decision making process. Other, even more complex
expressions of robustness can be considered, such as the probability that the quality of the
solution falls below a certain threshold.

Penalty functions Some solutions might become infeasible for some realisations of the
stochastic parameters. The decision maker might therefore decide to only allow solutions that
are feasible across all potential realisations. This would imply that a solution that is infeasible
in at least one of the ne cases, would receive an infinitely large robust evaluation function
value. A less drastic approach is to allow for some infeasibility through the use of penalty

functions. A robust evaluation function that incorporates penalty functions is of the form

f∗(x) =
1

ne

ne
∑

i=1

[f(x;Si(π)) + P(x;Si(π))],

where P is a penalty function that should reflect the “severity” of the constraint violation of
solution x under the realisation Si(π) of the stochastic parameters.
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Advantages The framework provides an answer to several problems that cannot be ade-
quately dealt with by more traditional methods based on stochastic programming. First, since
the framework requires only to adapt the objective function of a metaheuristic for a deter-
ministic problem, it is very easy to use. Secondly, the framework is in principle applicable to
any stochastic optimisation problem. There is no limit on the number and type of stochastic
parameters that can be entered into the problem formulation. E.g. scenarios can be used
if desired. Thirdly, the framework can easily be extended to—for example—include penalty
functions for infeasible solutions or to take the risk preference of the decision maker into ac-
count. Fourthly, finding the optimum of large-scale stochastic problems is more often than
not intractable. As indicated by Birge (1997), the complexity of stochastic programs grows
proportionally to the number of possible realisations of the stochastic parameters, which in
turn grows exponentially with the number of stochastic parameters. Because in realistic cases
this number is usually very large or even infinite (in the case of continuous distributions), only
very small problems can be solved to “optimality”, however this is defined. Fifthly, robustness
and flexibility are terms that can be used to express a number of different properties of a so-
lution, of which average-case and worst-case performance are probably the most widely used,
but many others can be considered. The framework does not force an unnecessary choice of
objective onto the decision maker. Using the robust evaluation function, decision makers can
determine their preferred type of robustness or flexibility and find the best solution accord-
ing to their preferences. Different expressions of the concepts of robustness can be evaluated
simultaneously

3 An example experiment

Due to lack of space, only one small experiment is discussed. The problem is a capacitated,
distance-constrained vehicle routing problem with stochastic travel times and stochastic cus-
tomer demand. The problem is defined on an undirected graph G = (V,E) with a set of nodes
V = {0, 1, . . . , n}. Node 0 corresponds to the depot, that has a set of identical vehicles of
capacity Q and maximal travel cost C. Nodes 1 to n represent a set of spatially distributed
customers, the demand of which is given by qi. The travel cost between customer i and cus-
tomer j is given by cij , the weight of the edge between node i and node j. The objective of
the deterministic VRP is to find a set of minimum total cost routes that have the following
properties: (1) each route begins and ends at the depot, (2) each customer is visited exactly
once, (3) the capacity and maximal travel cost of the vehicles is not exceeded.

To solve this problem, we have developed a GA|PM, or genetic algorithm with population
management. A GA|PM is a memetic algorithm (a GA hybridised with local search) that uses
distance measures to measure and control the diversity of a small population. For a complete
description of GA|PM, we refer to Sörensen (2003).

In the stochastic problem, travel costs cij and customer demand qi are assumed to be stochastic.
The demand of customer i is uniformly distributed between 0.75q̄i and 1.25q̄i, where q̄i is the
average demand of customer i. We assume that the average demand of a customer is equal to
the demand in the deterministic case. Travel costs between customers i and j are uniformly
distributed between 0.8c̄ij and 1.2c̄ij . If the maximum capacity of a vehicle is exceeded, a
penalty cost of α2 = 500 units per unit of exceeded capacity is incurred. If the travel cost in
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a route is greater than the maximum travel cost, a penalty of α1 = 100 units per cost unit is
incurred. These values are deliberately set to a relatively high level to increase the need for
robust solutions.

The dispatcher is interested in a solution that has a good average performance nd a good
worst-case performance. Therefore, two objective functions are calculated for each solution
encountered by the VRP. f ∗

1 measures the average performance of the solution. Let f(x; p)
represent the sum of travel costs in all the routes of solution x for a given set of demand and
travel costs p.

f∗
1 (x) =

1

ne

∑

k

[f(x;Sk(π)) + P(x;Sk(π))] (4)

The second robust evaluation function f ∗
2 (x) measures the worst-case performance of a given

solution.

f∗
1 (x) = max

k
[f(x;Sk(π)) + P(x;Sk(π))] (5)

The GA|PM with robust evaluation functions f ∗
1 and f∗

2 is applied to 14 vehicle routing
problems. A small extract containing the results of a single experiment, is given in table 1.

Data file n Criterion f f∗

1 σ∗

best case f∗

2

vrpnc01 50 f 549.76 3211.60 2891.00 523.73 17779.56

f∗

1 604.76 605.01 13.21 567.72 876.66

f∗

2 629.12 629.28 10.61 595.26 661.48

Table 1: Vehicle routing with stochastic demand and cost, example result

Table 1 lists results for data file vrpnc01 having 50 customers. The column criterion indicates
which objective function has been minimised by the solution in the row. The solution in the
first row minimises the ordinary objective function value f . It can be seen that this solution has
a relatively low ordinary evaluation function value, but scores rather badly with respect to the
first and second robust evaluation function and moreover, has a very high standard deviation.
Although this solution scores very well in the deterministic case, it is clearly not robust. The
solution in row 2 minimises f ∗

1 . This solution obviously also has a very good worst-case value
and a very good standard deviation, indicating that it is considerably more robust than the
solution in row 1. The solution in row 3 is the most conservative one, optimising its worst-case
performance.

An interesting result is that both robust solutions have a relatively good score on the ordinary
evaluation function. This is not surprising as the definition of a robust solution is one that has
a good quality across the potential realisations of the stochastic parameters of the problem.
The reverse however is not true. This can be clearly seen in figure 1. This figure shows the
result of 200 generations (400 solutions) for data file vrpnc01. All solutions are evaluated
using the ordinary evaluation function and the robust evaluation function f ∗

1 . Almost all
solutions in this chart exhibit a relatively good ordinary evaluation function value, but many
of them have a very bad robust evaluation function value. The opposite however is not true:
all solutions that have a good robust evaluation function value, also have a good ordinary
evaluation function value.

Le Gosier, Guadeloupe, June 13-18, 2004



6 TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

R
ob

u
st

ev
al

u
at

io
n

f
∗ 1
(x

)

Ordinary evaluation f(x)

��

��

��
��

�	


�

���

��

��

��

�� ��

��

��

��
 !"#$%

&'

() *+
,-

./0123

45

67

89

:;

<=

>?

@A

BC

DE
FG

HI

JK

LM

NO

PQ
RS

TU

VW

XY

Z[

\]

^_
`a

bc

de

fg

hijk

lm

no
pq

rs

tu

vw
xy

z{

|}

~�

��

��
��

��

��

��

��

�� ��

�� ��

��
��

��

��
��

 ¡¢£

¤¥

¦§

¨©

ª«
¬

®¯
°±

²³
´µ

¶· ¸¹

º»¼½

¾¿

ÀÁ

ÂÃ

ÄÅÆÇ
ÈÉ

ÊË

ÌÍ

ÎÏ

ÐÑ

ÒÓ

ÔÕ

Ö×

ØÙ

ÚÛ

ÜÝ Þß
àá âã

äå

æç èéêë

ìí

îï
ðñ

òó
ôõ
ö÷

øù

úû

üý þÿ
��

��
��

��

�	


�

�

��

��

��
��

��

��

�� ��

��

 !
"#

$%

&'

()

*+

,-

./

01

23

45

67

89

:;
<=>? @A

BC

DE
FG

HI

JK

LM

NO

PQ

RS

TU

VWXY
Z[

\]

^_

`a
bc

de

fg
hi

jk

lm
no

pq

rs
tu

vw

xy

z{

|}
~�

��

��

��

��

��

��

��
��

��

��

��

��
��

��

��

��

 ¡

¢£

¤¥
¦§

¨©

ª«

¬

®¯

°±

²³

´µ

¶·

¸¹

º»

¼½

¾¿

ÀÁ

ÂÃÄÅ

ÆÇ

ÈÉ

ÊË
ÌÍ

ÎÏ

ÐÑ

ÒÓ

ÔÕ

Ö×ØÙ

ÚÛ

ÜÝ

Þß

àá

âã
äåæç

èé

êë
ìí

îï

ðñ

òó

ôõ

ö÷

øù

úû

üý

þÿ
��

��

��

��

�	 
�

�

��

��

��
��

��

��

��

��

��

 !

"#

$%

&'

()

*+

,-

./

01

2345

67

89 :;

<=
>?

@A BC

DE

FG HI
JK

LM

NO

PQ

RS

TU

VW

XY

Z[

\]

^_

`a

bc

de
fg hi

jk
lm

no

pq

rs

tu

vw

xy

z{

|}

~�

��

��

��

��
��

��

��

��

��

��
�� ��

��

��

��

��

 ¡

¢£ ¤¥
¦§

¨©

ª«

¬

®¯

°± ²³

´µ

¶·¸¹
º»

¼½

¾¿

ÀÁ
ÂÃ

ÄÅ

ÆÇ ÈÉ

ÊË

ÌÍ

ÎÏ

ÐÑ ÒÓ

ÔÕ

Ö×

ØÙ

ÚÛ

ÜÝ

Þß

àá

âã

äå

æç

èé

êë

ìí îï

ðñ

òó

ôõ

ö÷

øù

úû

üý þÿ

�� ��

��
��

�	


�

�
��

��

��

��

����

��

��

Figure 1: Ordinary evaluation and robust evaluation for vrpnc01

4 Conclusions

In this paper we have shown how a metaheuristics-based framework for robust and flexible
optimisation can be succesfully applied to vehicle routing problems. The proposed method
was shown to have several advantages over more traditional methods based on stochastic
programming.

References

D. J. Bertsimas and D. Simchi-Levi. “A new generation of vehicle routing research: robust
algorithms, addressing uncertainty”, Operations Research 44, 286–304 (1996).

D.J. Bertsimas. “A vehicle routing problem with stochastic demand”, Operations Research

40, 574–585 (1992).

J.R. Birge. “Stochastic programming computation and applications”, INFORMS Journal on

Computing 9, 111–133 (1997).

M. Gendreau, G. Laporte, and J.-Y. Potvin. “Metaheuristics for the vehicle routing problem”,
Technical Report G–98–52, GERAD (1998).

M. Gendreau, G. Laporte, and R. Séguin. “Stochastic vehicle routing”, European Journal of

Operational Research 88, 3–12 (1996).

M. Gendreau and J.-Y. Potvin. “Dynamic vehicle routing and dispatching”, In T.G. Crainic
and G. Laporte (editors), Fleet Management and Logistics, pages 115–126. Kluwer Academic
Publishers, Boston (1998).

V. Lambert, G. Laporte, and F.V. Louveaux. “Designing collection routes through bank
branches”, Computers and Operations Research 20, 783–791 (1993).

Le Gosier, Guadeloupe, June 13-18, 2004



TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis 7

C. Prins. “A simple and effective evolutionary algorithm for the vehicle routing problem”,
Computers and Operations Research (2004). To appear, available online since 24 May 2003.
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