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1 Introduction

The collection of bulky recyclable waste produced by households is organized by establishing
several solid waste transfer stations (TS), so called isole ecologiche in Italy, spread in the
territory nearby urban areas. Each TS hosts several containers, one for each type of collected
waste material: e.g., paper, metals, trim yard, wood, glass, and so on. Residents bring their
waste to the TS and dispose it into the appropriate container, according to the material.
Containers are of different type, depending on their access side (left, right or rear access skips)
or on the presence of a compacting equipment, and this may vary from TS to TS. Once a
container is full, a disposal request is issued, consisting of the following two actions, to be
carried out not necessarily in this order: i) the full container is brought to a disposal plant to
be emptied, such as a landfill or a recycling facility, ii) an empty container of the same type is
brought to the TS.

A fleet of homogeneous vehicles is available. Each vehicle can carry a single container at a time,
either empty or full. In the common practice, the two actions a service request is made of are
handled as a whole by a single vehicle, as described in [1]. On the other hand, splitting the two
actions introduces a substantial degree of freedom, as it emerges in [3], since any sequence of
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operations is allowed and the loading and unloading of a container is not necessarily assigned
to the same vehicle.

The problem addressed in this paper is the following. Consider a fleet of homogeneous vehicles
hosted at a single depot and a set of additional empty containers of given types stored at the
depot. Assume that the location of the available disposal plants for each type of material is
given and all travel times along the road network are known. Given a set of service requests,
the aim is to determine the vehicle routes starting and ending at the depot involving pick-
up of full containers at TSs, dumping operations at appropriate disposal plants, delivery of
empty containers where required, while minimizing both the number of vehicles and the global
travelled time, subject to a maximum route duration constraint.

The problem can be modeled as a particular Asymmetric Vehicle Routing Problem (AVRP) on
a suitable graph (see section 2) whose peculiar structure allows us to devise efficient heuristic
algorithms (section 3). In a preliminary computational experience we compare the results of
our algorithms with those currently implemented in some real life cases of a regional area in
central Italy (section 4).

Closely related problems are addressed in [1], [3] and [5], but as far as we know the general
case, dealing with multiple disposal facilities and limited number of available containers, has
never been tackled. Indeed, [5] solve the version with unlimited containers, exploiting the
tight bound provided by the solution of an associated transportation problem. However, such
bound may turn rather loose in case of limited containers as containers become a common
resource that has to be shared among all routes. In such a case, the decision of serving an
empty request by bringing a new container from the depot or by using a container that has
just been emptied is a global decision whose feasibility depends on the whole solution, even in
the simplest case when the same container can be used at most once.

2 The graph structure and the AVRP formulation

For the sake of simplicity we consider a single depot.

Let {1, . . . , n} be the set of service requests. Each request i is characterized by a material µi,
a container type βi, and a TS γi. If two requests refer to the same container type, they are
said to be compatible. The graph G = (N,A) supporting our Vehicle Routing model does not
directly map the physical network. Two main set of nodes, E,F ⊂ N model service requests,
in particular for each request i the two nodes fi and ei represent the full container to be
brought to a specific disposal plant for material µi, and the request of an empty container of
type βi to replace the full one at γi, respectively. Moreover, we consider a node D representing
the depot, K nodes d′1, . . . , d

′
K representing the possible pick-up of the K available empty

containers located at the depot and K nodes d′′
1 , . . . , d

′′
K representing the return of empty

containers of the same type to the depot.

Notice that we do not explicitly model nodes representing disposal plants, whereas disposal
operations are embedded into some of the arcs of the graph. Two classes of arcs are given.
Arcs in the first class model vehicles activities when loaded with a container, either full or
empty, and are referred to as loaded arcs. The second class of arcs, so called unloaded arcs,

Le Gosier, Guadeloupe, June 13-18, 2004



TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis 3

models any vehicle trip when not carrying a container.

The main set of loaded arcs connect fi and ej for any pair of compatible requests (i, j). Arc
(fi, ej) corresponds to picking up the full container of request i, taking it to and dumping it at
the closest disposal plant for material µi on the way to the TS of request j, where the empty
container is delivered. Note that, once the pair of requests is known, it is easy to determine
the closest disposal plant and to evaluate the travel time which should include the time needed
to carry out the loading-unloading operations as well as the dumping service. If i = j, then
we have arc (fi, ei) corresponding to the simplest case of picking up a full container, emptying
it at the closest disposal plant and bringing it back to its original site.

The main set of unloaded arcs concerns those connecting ei to fj for any pair of service requests
(i, j). Arc (ei, fj) models a vehicle that has just delivered an empty container of type βi at
TS γi, and travels unloaded up to TS γj in order to pick-up the full container of request j.
Note that requests i and j do not have to be compatible. The travel time related to this arc
is simply the travel time from γi to γj, including container loading and unloading times. If
i = j, arc (ei, fi) corresponds to bringing an empty container to satisfy request i and switch
it with the full container.

Furthermore, since vehicles are supposed to leave the depot and return as unloaded, we consider
as additional unloaded arcs all those: from D to each fi node, from each ei to the depot, from
D to each d′

1
, . . . , d′K , from each d′′

1
, . . . , d′′K to D; whereas additional loaded arcs are all those

from each d′1, . . . , d
′
K to every compatible node ei, and those all arcs from each fi to every

compatible node d′′1 , . . . , d
′′
K .

Remind that each node d′k models the pick-up of an empty container available at the depot
whereas d′′k models the delivery of the same container to depot. Thus arcs (D, d′

k), k = 1, . . . ,K
model the loading of a container on an unloaded vehicle at the beginning of a vehicle route;
arcs (d′′k, D) , k = 1, . . . ,K model the unloading of a container from a vehicle at the end of the
vehicle route; whereas arcs (d′′

k, d
′
k), k = 1, . . . ,K model the unloading of a container from a

vehicle and the loading of another container at the depot during the vehicle route.

Observe that each arc corresponds to an operation that can be executed by a single vehicle.
A tour is an elementary cycle through D in G, while a feasible vehicle route is a collection of
tours disjoint on N \ {D} having total duration less than or equal to a given L. A collection
of feasible routes passing exactly once by E ∪F and at most once by d′

1, . . . , d
′
K , d′′1 , . . . , d

′′
K is

a feasible solution of the waste disposal problem. Therefore solving the corresponding AVRP
on G would solve our problem.

As the total travel time is the sum of the tours travel time, the number of vehicles is obtained
by solving a bin packing problem with bin size L. As tours start and end at the depot, any
permutation of the tours associated to the same bin yields a feasible route for that vehicle.

3 Heuristic algorithms

Any tour can be seen as an alternating sequence of ei and fj nodes, that is to say a sequence
of loaded and unloaded arcs. Loaded arcs connect compatible nodes while unloaded arcs may
connect nodes related to containers of any kind. Such particular graph topology suggests
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several neighborhood structures that can be exploited within a local search framework. We
list them in the following, while computational results are discussed in section 4. Some neigh-
borhoods can be seen as the specialization of classical VRP moves to G, and we refer to the
terminology in [7, 2], while others have been suggested by the particular structure of G.

All the three neighborhoods aim at reducing the total route lengths with inter-route moves
(neighborhoods N1 and N2) and intra-route moves (neighborhood N3), however, N1 and N2 can
be used with an appropriate move evaluation function to progressively shift nodes from a given
route to others in order to reduce it to an empty route and save a vehicle. Indeed, while each
single move is rather simple, they can be combined to give rise to quite sophisticated strategies.
The only feasibility constraint to be checked in all such operations concerns maximum route
duration and can be easily handled. Infeasible solutions could be considered by penalizing
riding times exceeding the maximum, and not avoiding them.

Any move is subject to a vehicle cardinality feasibility check, that verifies the existence of a
container packing solution with the current number of vehicles, with respect to an overworking
parameter αL, α ∈ [0, 0.2] to handle temporarily infeasible solutions.

The starting solution is computed by applying a modified Clarke and Wright algorithm [4]
which proved to be quite effective for this kind of problems as pointed out in [5].

3.1 Definition of neighborhoods

Neighborhood N1: string exchange and relocation

Neighborhood N1 is based on the exchange of two sequences s1 and s2 of consecutive arcs
between a pair of tours. The sequences under consideration contain an odd number of arcs
and start and end with unloaded arcs. By allowing at each step only pairs of sequences with
|s1| = σ and 1 ≤ |s2| ≤ σ, for σ = 1, . . . , σmax the neighborhood size can be controlled. Note
that |s1| = 1 has the effect of shifting a sequence from a tour to another one (i.e., relocation).
Note that, since this neighborhood involves unloaded arcs only, compatibility does not have
to be accounted for.

Neighborhood N2: string cross

In this case we apply the classical string cross move to pairs of tours. The move is applied to
either a pair of unloaded arcs or to a pair of compatible loaded arcs.

Neighborhood N3: intra-tour string relocation

This move is a 3-opt move without arc reversing performed on a single tour restricted to
unloaded arc triplets. This restriction allows us to neglect the effect of reversing a sequence
containing loaded arcs.

Neighborhood N4: intra-tour loaded arcs reversing

This move can be seen as a 2-opt move restricted to a sequence of compatible loaded arcs.

Neighborhood N5: intra-tour additional empty container

This move consider the availability of an additional container of a given type. The use of the
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container is suitably inserted into a tour, thus involving the reversing of some loaded arcs. In
practice this move is an extension of N4.

Composite Neighborhoods

Families of moves are obtained suitably combining N1, . . . , N5 in order to create sequences of
compatible loaded arcs by string exchange, crossing and relocation and eventually reversing
them.

4 Preliminary computational results

A preliminary computational campaign has been carried out on real data provided by the waste
collection company operating in the regional area of Perugia. The company serves ten TSs
distributed in an area of about 450 km2, six different types of containers, three disposal centers
used to recycle ten different types of material. The problem instances, deriving from the daily
operations, involve three vehicles and up to 11 service requests, they require quite long hauls
and they have a time limit of 375 minutes. Even though these instances are quite small, they
provide useful indications. These instances are hardly solvable with commercial ILP solvers
and the first results provided by the proposed heuristics favorably compare with the exact
solution values. Moreover the resulting routes are extremely better than those operated by
the company, saving travel time and in certain cases saving also one vehicle out of the three
devoted to this kind of service. In the light of the obtained results, the company is thinking to
extend the service also to industrial waste collection, which would significantly increase the size
of the instances. Also extensions to multiperiod settings will be considered. Here we report
some results on some real instances. We report the total travel time of the optimal solution
(Opt), the percentage gap between the optimal solution and the modified Clarke and Wright
(Gap CW), the percentage gap between the optimal solution and the local search (Gap LS),
and the the percentage gap between the local search and the company solution (Gap G). As
far as number of vehicles is concerned, entries in boldface report the cases in which the local
search is able to spare a vehicle compared to the company solution. CPU times on a 2GHz
PC are also reported.
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