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1 Introduction

An important concern in most travel forecasting models is the way travelers choose their
routes. The user-equilibrium (UE) model (Wardrop, 1952) assumes that all used routes are
minimum cost routes under prevailing (congested) traffic conditions. Further assuming that
link costs are separable monotonically increasing functions of link flows allows to determine
uniquely total flows on all links in the network. Total link flows determine link costs, route
costs, and the set of minimum cost routes, referred to as the set of UE routes. Although the
set of UE routes is unique, finding it computationally is not a trivial task, as discussed below.
A greater challenge is to determine the distribution of flows between UE routes, as it requires
additional behavioral assumptions.

The ability to find the set of used routes and the flows on these routes is highly desirable
from both theoretical and practical perspectives. In many practical applications route flows
are essential to the analysis. For example: assessing the appropriate contributions of different
communities to a transportation improvement project (Rossi et al. 1989); deriving OD flows
in a sub-region from a regional model (Hearn et al. 1984); estimating emissions in consider-
ation of cold starts; and more. In addition, practitioners examine the set of used routes to
gain understanding about the model behavior and to verify its validity. Recently, researchers
began to explore the structure of the set of UE routes as well. Harris (2002) investigated the
geographic patterns created by the set of UE routes. Xiong (2002) explored the connection
between the number of alternative routes for each OD pair and their location. The sets of
routes analyzed in these studies were found by the method described in this paper.

To date, several researchers have addressed the non-uniqueness of route flows in the UE model.
Rossi et al. (1989) suggested that among all route flow patterns that satisfy the UE condition,
the entropy-maximizing pattern is the most likely one. Preliminary behavioral interpretation
for entropy maximization has been presented by Bar-Gera and Boyce (1999). Janson (1993)
presented a link-based computational procedure for the Maximum Entropy User Equilibrium
(MEUE) problem, using successive stochastic user-equilibrium (SUE) approximations of the
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original problem. Dual methods for MEUE consist of two stages, in the first stage total link
flows and the set of UE routes are determined by a traffic assignment algorithm; in the second
stage route flows are determined using either iterative balancing (Bell and Iida, 1997) or by
conjugate gradient (Larsson et al. 1998). It is important to note that in these dual methods all
routes chosen in the first stage will receive a positive (non-zero) amount of flow in the second
stage. Therefore, it is essential to make a good choice of routes in the first stage. In addition,
during the iterative process the dual solution is typically primal infeasible, meaning that total
link flows are different from those obtained in the first stage. These mismatches imply loss
of precision in meeting the UE conditions, which is only regained as the solution converges,
possibly doubling the overall computation time (according to results by Larsson et al. ,1998).
Linearly dependent link flow constraints, as demonstrated by example in Bell and Iida (1997),
create additional difficulty for dual methods, as they lead to non-unique dual solutions and
potentially to convergence problems. To summarize, while dual methods are perhaps easier to
implement, they suffer from several essential shortcomings that may be better resolved by a
primal method.

The main goal of this research is to develop an efficient primal method for the MEUE problem.
In this method, once the UE problem has been solved to sufficient accuracy, route flows are
modified without changing total links flows at all, thus maintaining the UE precision achieved
in the first stage throughout the iterative process. Direct consideration of the MEUE optimal-
ity conditions to derive ascent directions guarantees convergence. Their special structure is
utilized to maximize algorithm efficiency. An intermediate goal of this research is to develop
a coherent practical methodology for identifying the set of UE routes, which is in fact an im-
portant goal by itself as discussed above. Interestingly, the proposed conditions for choosing
an appropriate set of routes are closely related to the optimality conditions of the MEUE
problem. Satisfying these conditions is therefore critical in both primal and dual methods for
the MEUE problem.

2 The set of user-equilibrium routes

The UE traffic assignment problem, like most other non-linear problems, can only be solved
to a limited level of precision. At the exact equilibrium there are often several UE routes
with equal costs; however, in an approximate solution, even if it is a very good one, the
approximated costs of these UE routes are usually not exactly equal. In many cases, for each
OD pair, only one of the routes attains the minimum among the approximated costs, while the
cost of other UE routes is slightly higher than the minimum. Similar to previous studies (e.g.
Larsson et al. 1998), we suggest to choose all the routes that are within a certain acceptance
gap, ga > 0, from the minimum. To be more precise, suppose that t is the vector of link
costs according to the approximate solution obtained at the assignment stage, cr(t) is the
implied cost of route r, and Cpq(t) = min {cr(t) : r ∈ Rpq} is the minimum cost from origin
p to destination q under these conditions; define the excess cost of route r from origin p to
destination q as ecr(t) = cr(t) − Cpq(t) and choose all routes such that ecr(t) < ga. Note
that if t∗ is the vector of exact equilibrium link costs then by definition ecr(t

∗) = 0 for all UE
routes and ecr(t

∗) > 0 for all other routes. Since the number of a-cyclic routes is finite, we can
define a strictly positive equilibrium rejection gap, g∗

r > 0, as the minimum equilibrium excess
cost on all non-UE routes. Therefore, if the solution is sufficiently well converged, it is possible
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Network Zones Nodes Links Accept Reject Consistency # routes

Sioux Falls 24 24 76 1.35E-13 0.699 5.2E+12 770
Barcelona 110 1020 2522 1.95E-14 5.20E-07 2.7E+7 11,295
Winnipeg 147 1052 2836 2.34E-13 3.09E-05 1.3E+8 9,880
Tucson 646 3603 9619 7.47E-12 5.33E-06 7.1E+5 1,568,387
Chicago sketch 387 933 2950 1.71E-13 2.42E-04 1.4E+9 127,248
Chicago regional 1790 12,982 39,018 2.64E-12 9.32E-10 345 93,026,894

Table 1: Sets of routes obtained according to the consistency principle.

to find the exact set of UE routes by choosing an acceptance gap 0 < ga < g∗r such that for all
UE routes ecr(t) < ga and for all non-UE routes ecr(t) > ga. The remaining challenge is to
choose the acceptance gap and to determine if the solution is sufficiently well converged.

Unfortunately, we do not have an ultimate answer for these questions, but we do offer con-
siderations that should be taken into account, and demonstrate their usefulness in large-scale
numerical experiments. The first and obvious consideration is the set of routes actually used
in the approximate solution, especially if residual flows from suboptimal routes are eliminated
by the assignment algorithm, which is typically the case for route-based and origin-based al-
gorithms. The inclusion of all used routes in the set of chosen routes guarantees the existence
of a feasible solution to the entropy maximization problem.

The second consideration, which is not as obvious, is based on a fundamental property of the
set of UE routes, as any other set of minimum cost routes, that it guarantees consistent con-
sideration of alternative route segments. Meaning, that if a pair of alternative route segments
is considered by some travelers, then other travelers with the same priorities (same class),
but possibly traveling from a different origin to a different destination, either consider both
alternative segments or none of them. Formally, let Kra indicate the number of times route
r traverses link a, and let Kr be the vector of Kra for all the links. We say that a set of
routes R0 is n-consistent if for every sequence of n OD pairs piqi with two alternative routes
ri, r

′

i ∈ Rpiqi
for each OD pair, such that ri ∈ R0 for i = 1 . . . n and

∑n
i=1(Kri

−Kr′
i

) = 0 then

r′i ∈ R0. We show that the condition of 2-consistency is equivalent to the intuitive condition of
consistent consideration of alternative segments, and discuss the implications of higher levels
of consistency using graphical examples.

Our interest in consistent sets of routes stems from the fact that any set of minimum cost
routes, and particularly the set of UE routes, is completely consistent, meaning that it is n-
consistent for all n. Therefore, a set of routes with higher level of consistency is more likely
to be the set of UE routes. We show by example that any predetermined acceptance gap
may lead to an inconsistent set of routes. However, we show that if for a given vector of link
costs t, there exist an acceptance gap ga > 0 and a rejection gap gr > n · ga such that there
are no routes with ga < ecr(t) < gr, then the set of routes with ecr(t) < ga is n-consistent.
Numerical results for several networks obtained according to the consistency principle are
presented in Table 1, including the acceptance gap ga, the rejection gap gr, the guaranteed
level of consistency and the number of routes. Note that all of these solutions are extremely
well converged, with less than a nanosecond maximum excess cost (acceptance gap). The high
levels of consistency suggest that these sets of routes are quite possibly the exact sets of UE
routes.
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We explore several non-trivial theoretical issues regarding the above-mentioned definition of
consistency. We show by graphical examples that for any value of n there are sets of routes
that are n-consistent but not completely consistent. We demonstrate that it is not always
possible to extend an existing set of routes to a completely consistent one, using examples
of finite (small) sets of a-cyclic routes where the condition of 2-consistency requires adding
an infinite number of cyclic routes. The last and perhaps most surprising result, based on
Gallager (1977), is that any finite completely consistent set of routes is the set of minimum
cost routes under some (arbitrary) strictly positive values of link costs.

Once we choose a set of routes R0, we may be interested to verify whether it is consistent or
not by searching for consistency conditions that are not satisfied by R0; however, there does
not seem to be any apparent efficient way of doing that. We may also be interested in searching
for consistency conditions that are satisfied by R0, that is sequences of pairs of alternative
routes ri, r

′

i ∈ R0
piqi

such that
∑n

i=1(Kri
− K′

ri
) = 0. The characterization of the consistency

conditions that are satisfied by R0 provides interesting insights about the structure of R0 and
about the frequency of higher order conditions of consistency. This characterization is also
useful for solving the MEUE problem as discussed in the next section.

We aim to find a set of basic consistency conditions for R0, such that all other consistency
conditions satisfied by R0 would be equivalent to sums of basic ones. Note that indeed any
sum of consistency conditions is also a consistency condition. A consistency condition is
trivial if it corresponds to reordering of the routes, that is if ri = r′

g(i) for some permutation

g : {1 . . . n} → {1 . . . n}. Consistency conditions are equivalent if the difference between them is
trivial. Now, consider the difference vector d = Kr−K′

r for r, r′ ∈ Rpq as a connection between
the routes r and r′. (A connection by d or by −d is considered to be the same.) Suppose
that a set of difference vectors D connects R0 in the sense that every pair of alternative routes
is connected through a sequence of vectors in D. Formally, we assume that for every OD

pair pq, there exists a spanning tree
{

R0
pq, T

0
pq

}

such that every edge {r, r′} ∈ T 0
pq is directly

connected by Kr −Kr′ = d ∈ D. It can be shown that any consistency condition is equivalent
to one that uses only route pairs that are directly connected by D. Note that in 2-consistency
conditions that use edges of T 0, both r1, r

′

1 and r2, r
′

2 must be connected by the same vector
d ∈ D. Therefore we choose for every vector d ∈ D a global representative edge, E(d), as well
as origin-specific representatives Ep(d) for every origin where such representative exists. The
2-consistency condition created by an edge and the relevant origin representative is considered
basic within origin. The 2-consistency condition created by an origin representative and the
relevant global representative is considered basic between origins. To complete the analysis
we find an integer basis for the linear dependencies between vectors in D, and from every
element of this basis we construct an additional basic consistency condition using the global
representatives of the participating vectors. We show that every consistency condition is
equivalent to sums of basic conditions.

The usefulness of this analysis depends mainly on the choice of D. We present a method for
choosing D and the resulting breakdown of basic consistency conditions for different networks,
as shown in Table 2. As discussed in the next section, these are associated with MEUE
optimality conditions. Note that consistency conditions of level higher than 2 must imply
linear dependency in D. The small numbers of these linear dependencies demonstrate that
higher-level consistency conditions are relatively rare in real life networks.

Le Gosier, Guadeloupe, June 13-18, 2004



TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis 5

optimality conditions constraints
Network 2-consistency independent

within origins between origins other (in D) OD flows link flows

Sioux Falls 138 70 5 528 29
Barcelona 2,268 962 38 7,922 119
Winnipeg 2,430 2,942 2 4,345 161
Tucson 1,179,105 22,911 8 366,087 276
Chicago sketch 27,261 6,204 4 93,513 266
Chicago regional 89,822,183 901,656 92 2,297,945 5019

Table 2: Breakdown of route flow solution dimension

3 Maximizing route flow entropy

To obtain primal optimality conditions for the MEUE problem one must first identify the
subspace of feasible directions, that is the set of flow changes over the routes in the chosen set
R0 that do not change OD flows or total link flows. To maintain OD flows, the change must be
a sum of shifts of flows between alternative routes. A shift of flow between routes r, r ′ ∈ R0

pq

can be viewed as a sequence of shifts along the edges of T 0
pq. The change in total link flows as

a result of shifting flow δ along the edge r, r ′ ∈ T 0
pq is δ · (Kr −Kr′) where Kr −Kr′ = d ∈ D.

Therefore, any feasible direction corresponds to a linear dependency in D. Given the integer
basis for these linear dependencies discussed above, it is clear that any feasible direction is
associated with a consistency condition. This fact emphasizes the importance of the proposed
condition of consistency in choosing the set of routes R0; since if certain routes that are needed
according to a consistency condition are not included in R0, then clearly it will not be possible
to satisfy the corresponding MEUE optimality condition. (As discussed above, adding more
routes than necessary, that is adding non-UE routes, is also problematic as these routes will
get positive flows, thus violating the UE condition.)

The characterization of consistency conditions presented above can therefore be viewed as
a characterization of feasible directions, providing the foundation for a primal method for
the MEUE problem. A general strategy can be to consider all basic conditions/directions
repeatedly, in some order, and to maximize the entropy by line search along each of these
directions. This strategy guarantees that total link flows will not change at all during the
iterative process, thus maintaining the precision of the UE solution obtained in the assignment
stage. It also guarantees that entropy will never descend. Convergence can be proven by
showing that the algorithmic map is closed (in fact continuous).

Computational efficiency of the proposed primal approach can be substantially enhanced us-
ing an origin-based representation of the solution (Bar-Gera, 2002). Any a-cyclic origin-based
solution has an immediate route flow interpretation that satisfies the entropy maximization
optimality conditions within each origin (Bar-Gera and Boyce, 1999). The optimality con-
ditions associated with a single difference vector d ∈ D imply that the same proportions of
flows between the two alternative route segments represented by d apply to all route pairs
connected directly by d. All of the optimality conditions for a single vector d can be handled
simultaneously by computing the total flow on the two segments and applying the resulting
ratio to all origins. A special data structure has been developed that allows performing these
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computations efficiently by considering only the links that are part of the alternative segments.
The optimality conditions associated with non-trivial linear dependencies in D require addi-
tional effort; however, given their negligible number, it seems that for all practical purposes
good approximations of the entropy maximizing solution can be found even if these conditions
are ignored. The precision in satisfying the optimality conditions that are considered can be
measured by the amount of flow that must be shifted to satisfy them (one at a time). Without
the proposed algorithm, necessary flow shifts reach 100-1000vph in the different networks. The
algorithm finds solutions with maximum flow shift of 1vph for the different networks in 0.01,
0.1, 0.25, 2.65, 0.3, and 310 seconds respectively.

4 Conclusions

This paper presents a new formal condition of consistency for sets of routes, which is satisfied by
any set of user-equilibrium routes. The main implication of the proposed condition is consistent
consideration of alternative route segments. A methodology for choosing a consistent set of
routes from an approximate traffic assignment solution is presented as well. The connection
between primal optimality conditions and consistency conditions provides the basis for a new
primal algorithm for the maximum entropy user-equilibrium problem. As a primal algorithm,
feasibility is maintained throughout the iterative process, which means that total link flows
remain without any modification in this process, thus maintaining the precision of the solution
to the user-equilibrium problem obtained by the traffic assignment algorithm. Numerical
examples demonstrate that the proposed approach performs well in a variety of networks,
including real-life large-scale networks. This algorithm is important for practical applications
such as sub-region models, impact fee assessment and more.
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