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1 In tro duction

We consider the problem of determining the prices and locations at which to toll the trans-
portation network under the assumption that some roads, for political and other reasons,
cannot be tolled. Because tolls with this and other types of restrictions do not generally yield
the maximum benefit possible, they are referred to as ‘second-best’ (see, e.g., [8]). In the
transportation literature, many (see, e.g., [9], [10], [4], [17], and [20]) model the second-best
toll pricing problem either as a bilevel optimization problem (see, e.g., [19] and [2]) or a mathe-
matical program with equilibrium constraints or MPEC (see, e.g., [12] and [16]). Several (e.g.,
[9], [4], [17], and [21]) have proposed algorithms to solve the second-best problem and some
provide numerical results on small to medium sized networks.

Our focus is on using results from the MPEC literature to develop equivalent nonlinear op-
timization models for the second-best problem with two goals. One is to establish properties
for the second-best tolls of interest to transportation economists and the other is to consider
an algorithm that is a natural consequence of one of the nonlinear optimization models.

Section 2 formulates the second-best problems with fixed and elastic demands as an MPEC.
Section 3 discusses two nonlinear programming formulations equivalent to the MPEC. (See [11]
for other equivalent formulations.) From these formulations, Section 4 establishes properties
of second-best toll vectors and Section 5 describes an algorithm for the second-best problem.
Section 6 concludes the paper.

2 Second-Best Toll Pricing Problems

Below are formulations of the second-best toll pricing (SBTP) problems with fixed and elastic
travel demands. We assume that the transportation network contains m nodes and n arcs.
There is also a node-arc incidence matrix, A, and a set, K , of origin-destination (OD) pairs
or commodities associated with the network. For OD pair k, dk , xk ∈ Rn and bk ∈ Rm are
the (fixed) travel demand, the (arc) flow vector, and a vector in Rm with exactly two non-zero
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components, one equals to dk at the origin node and the other equals −dk at the destination
node. Then, v =

P
k∈K xk denotes the vector of aggregate flow (or traffic volume) on each arc

and the set of feasible aggregate flow vectors can be described mathematically as follows

V =

8
<

:
v : v =

X

k∈K

xk ; Ax k = bk ; xk ≥ 0;∀k ∈ K

9
=

;
;

Let s(v), � , and Y be a travel cost vector, the vector of tolls on the arcs, and the set of arcs
that cannot be tolled. The SBTP with fixed demand (FD-VI) can be written as follows:

FD-VI: min
(v;� )

s(v)T v

s.t. v ∈ V;
� a ≥ 0; ∀a =∈ Y
� a = 0; ∀a ∈ Y
(s(v) + � )T (u − v) ≥ 0; ∀u ∈ V

The objective of FD-VI is to minimize total travel delay. For the constraints, the first ensures
that the aggregate flow vector is feasible. The second set requires tolls on tollable arcs to be
nonnegative. The third forces tolls on non-tollable arcs to be zero. Finally, the last set of
constraints ensures that the aggregate flow vector, v, solves a variational inequality (VI) that
represents a tolled user equilibrium condition.

When demands are elastic, we let t k be the travel demand for OD pair k. In this case, t k is a
decision variable distinct from dk , a fixed constant defined earlier. For OD pair k, wk(tk) and
Ek are the inverse demand function and a vector in Rm with exactly two nonzero components,
one equals 1 at the origin node and the other equals -1 at the destination node, respectively.
Then, the set of feasible volume-demand vectors is

VE D =

8
<

:
(v; t) : v =

X

k∈K

xk ; Ax k = Ek tk ; xk ≥ 0; tk ≥ 0; ∀k ∈ K

9
=

;
:

and SBTP with elastic demands can be stated as follows:

ED-VI: min
v;t;�

s(v)T v −
P

k∈K

R tk
0 wk(z)dz

s.t. (v; t) ∈ VE D ;
� a ≥ 0; ∀a =∈ Y
� a = 0; ∀a ∈ Y
(s(v) + � )T (u − v) − w(t)T (d− t) ≥ 0; ∀(u; d) ∈ VE D

In the objective function, s(v)T v and
P

k∈K
R tk

0 wk(z)dz are the total travel time (or cost) and
the benefit associated with making

P
k∈K tk trips. Subtracting the cost from the benefit yields

an expression for a net user benefit, whose value should be maximized. Equivalently, ED-VI
minimizes the negative of the net user benefit.
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3 Equiv alent Form ulations

Observe that both FD-VI and ED-VI are an MPEC of the form:

P-VI: min
(p;� )

f (p)

s.t. p ∈ P; � ∈ Π

(g(p) + � )T (q− p) ≥ 0; ∀q∈ P (1)

where f (p) is a continuously differentiable function on a bounded polyhedron P ⊆ Rn of the
form {p : Ap = b;p ≥ 0}, g(p) is a continuous and strictly monotone mapping from Rn to Rn ;
and Π ⊆ Rn is a compact set. Equation (1) requires p to be a solution to VI[g(p) + � ; P ] and
the assumptions on P and g(p) ensure that such a solution exits. (See, e.g., [5].) (Note that
P corresponds to the sets V and VE D . Theoretically, neither is bounded. However, we can
assume them to be so because the objective functions ensure that the optimal solutions for
both FD-VI and ED-VI cannot be unbounded.)

For the first equivalent nonlinear program, observe that any p feasible to P-VI must solve the
VI in (1). Thus, there must exist a � satisfying the following: (see, e.g., [6])

AT � ≤ g(p) + �

bT � = (g(p) + � )T p:

By replacing (1) with these two conditions, P-VI can be equivalently stated as

P-KKT: min
(p;� ;� )

f (p)

s.t. p ∈ P; � ∈ Π
AT � ≤ g(p) + �
bT � = (g(p) + � )T p:

For the other equivalent nonlinear program, recall that P is a bounded polyhedron. Thus, P
can be represented as a convex combination of its extreme points, of which there are finitely
many. Let qi denote the i th extreme point of P . Then, for any p ∈ P , there exists � i ∈ [0; 1]
such that

P n
i=1 � i = 1 and p =

P n
i=1 � i qi , where n is the number of extreme points for P .

Consequently, P-VI is equivalent to the following:

P-EX: min
(p;� )

f (p)

s.t. p ∈ P; � ∈ Π
(g(p) + � )T (qi − p) ≥ 0; ∀ i = 1; · · · ; n

4 Prop erties of Second-Best Tolls

This section establishes two properties of interest in transportation economics using P-KKT.
Both properties assume that travel demands are elastic. The first relates the second-best tolls
to the marginal social cost prices, ∇s(v)T v. The second property is an extension of the result
in Hearn and Yildirim [7] and demonstrates that the total toll revenue must be constant.
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1 2 

Arc 1 
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Figure 1: A two-arc problem

When each travel demand is elastic, many transportation economists (see, e.g., [14] and [20])
have observed in small examples that some of the marginal social costs from non-tollable arcs
must be shifted to those that are tollable in order to maximize the net user benefit. For
example, consider the two-arc problem in Figure 1, where Arc 1 is tollable and Arc 2 is not.
In addition, there is only one OD pair and its inverse demand function is w(t). The travel cost
functions are s1(v1) and s2(v2) where v1 and v2 represent the amount of flow on the two arcs.

Although an optimal solution for this problem can be expressed in a simpler form (see, [22]),
several authors (see, e.g., [20]) prefer to express the optimal toll for Arc 1 as

� 1 = s′1(v1)v1 +
w′(t)

s′2(v2) − w′(t)
s′2(v2)v2: (2)

This expression shows that part of the marginal social cost, s′2(v2)v2, on the non-tollable Arc
2 must be shifted to Arc 1 in order to maximize the net user benefit. This notion of shifting
marginal social costs from non-tollable arcs to the tollable ones is appealing to transportation
economists who have long argued for the use of marginal social cost prices (∇s(v)T v) as
congestion tolls (see, e.g., [1]). Therefore, it is of interest to generalize (2) to larger networks.
However, it would be unreasonable to expect that the second-best tolls can expressed in a
closed-form fashion and the shift as evident as in (2). Instead, the result below provides a
mechanism that illustrates these shifts indirectly using the KKT multipliers.

When applied to the second-best toll pricing problem with elastic demands, P-KKT can be
stated as follows:

ED-KKT: min
(v;t;� ;� )

s(v)t v −
P

k∈K
Rtk

0 wk(z)dz

s.t. (v; t) ∈ V
� a ≥ 0; ∀a =∈ Y
� a = 0; ∀a ∈ Y
(s(v) + � ) ≥ AT � k ; ∀k ∈ K
wk(tk) ≤ E T

k � k ; ∀k ∈ K
(s(v) + � )T v ≤ w(t)T t:

Then, following theorem assumes that the strong stationarity conditions in Scheel and Scholtes
[18] hold for ED-KKT. (See [11] for similar results under different assumptions.)
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Theorem 1 Let (v̄; t̄; �̄ ; �̄ ) be a global optimal solution to the ED-KKT that is strongly sta-
tionary. If the multiplier associated with the last constraint is positive, then �̄ is well de�ned
and, for any k; can be expressed as follows:

�̄ =
1

�

2

4 � k − (1 + � )[s(v̄) + ∇s(v̄)T v̄] − AT � k + ∇s(v̄)T
X

k∈K

 k

3

5 :

The second property is an extension a result in Hearn and Yildirim [7] and shows that this
revenue must be constant. When (v̄; t̄ ; �̄ ; �̄ ) solves ED-KKT, (�̄ ; �̄ ) must satisfy the following
linear system:

s(v̄) + � ≥ AT �; ∀k
wk(t̄k) ≤ E T

k �; ∀k
(s(v̄) + � )T v̄ = w(t̄)T t̄

� a = 0; ∀a ∈ Y:

Let W (v̄; t̄) denote the set of all possible solutions to this system, i.e., W (v̄; t̄) is the toll set
associated with (v̄; t̄). Then, it follows from the third equation in the above system that every
toll vector in W (v̄; t̄) generates the same revenue:

Theorem 2 � T v̄ = w(t̄)T t̄ − s(v̄)T v̄; ∀(� ; � ) ∈ W (v̄; t̄):

5 Cutting Constrain t Algorithm for P-EX

Consider problem P-EX. Although finite, the number of extreme points for the feasible region
of the second-best problem with fixed or elastic demands is extremely large. Therefore, it is
natural to generate these extreme points one at a time, each of which produces a constraint
that cuts away part of the region not feasible to the original problem. Some (see, e.g., [3]) refer
to this type of algorithms as the cutting plane algorithm when the constraints are linear and
others (see, e.g., [15]) refer to it as the Benders’ scheme when the constraints are nonlinear.
Marcotte [13] also proposed an algorithm using this scheme for solving a network design
problem formulated as an MPEC. When applied to P-EX, this extreme point generation idea
leads to the following algorithm:

Cutting Constrain t Algorithm for P-EX

Step 0: Let q1 = arg min{g(0)T q : q ∈ P}. Set n =1 and go to Step 1

Step 1: Solve the following (master) problem:

(pn ; � n ) = arg min
(p;� )

f (p)

s.t. (g(p) + � )T (qi − p) ≥ 0; ∀ i = 1; · · · ; n
� ∈ Π; p ∈ P:

Step 2: Solve the (sub)problem: qn+1 = arg min{(g(pn ) + � n)T q : q ∈ P}. If (g(pn ) +
� n)T (qn+1 − pn) ≥ 0, stop and (pn ; � n) is a solution to P-EX. Otherwise, set n = n + 1
and go to Step 1.
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Observe that the problems in Steps 0 and 2 are linear because P is a bounded polyhedron. In
Step 1, (pn ; � n ) is not feasible to the constraint subsequently generated in Step 2, i.e., (g(p) +
� )T (qn+1 −p) ≥ 0: Thus, Step 2 generates distinct extreme points and the algorithm must stop
after a finite number of iterations. (See [11] for a discussion concerning the implementation of
the cutting constraint algorithm.)

6 Summary and Computational Results

In this paper, we formulate the second-best toll pricing problem as a mathematical program
with an equilibrium constraint expressed as a variational inequality. To investigate the proper-
ties associated with and derive an algorithm for the problem, we present two equivalent nonlin-
ear programming formulations that lead to two main results. One relates the second-best tolls
to the marginal social cost prices via KKT multipliers and another yields a cutting constraint
algorithm. To demonstrate its potential, we implemented the algorithm using commercially
available software for linear and nonlinear programs and solved the second-best problems for
two cites, Sioux Falls and Hull. Our numerical results in [11] show that the algorithm produces
good solutions to both problems. For Hull, its solutions under different parameters are quite
good, in that the relative gap for the tolled user equilibrium condition is less than 10E-4 in
all cases. As a topic for future research, an algorithm that better exploits the structure of the
master problem would enhance the efficiency of the algorithm.
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