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Extended Abstract

The objective of this research was motivated by a real problem, which is the dynamic dispatch
of technicians of Xerox Chile to repair failures of their machines along the day. Xerox
Corporation is an international company that offers color and black-and-white digital printers,
digital presses, multifunction devices, and digital copiers. The proposed scheme is based upon
the classic formulation of the Vehicle Routing Problem with Soft Time Windows (VRPSTW),
and it is formulated and solved as a Dantzig-Wolfe decomposition by using set partitioning -
column generation along with classical insertion heuristics, under a constraint programming
approach.

The strategic objective of Xerox is based upon client satisfaction, and within this context,
the technical service of their machines is one of the most important activities of the company
in Chile, and that is why this study was motivated. Clients have different priorities, which
define different goal response times for clients at different priority levels. The goal response
time is defined as the maximum allowable time for a technician to reach the client measured
from the time of the service request. Nowadays, technicians use two transportation modes:
public transport and vans provided by the company. Choosing a mode depends on the area of
the incident and the current location (status) of busy technicians. The system proposed here
only considers the transport of technicians and equipment in vans, however it can easily be
reformulated in order to include public transport modes.

Another interesting feature of this specific problem is that usually there are some technicians
specialized in certain type of machines. The objective function for assigning technicians and

Le Gosier, Guadeloupe, June 13-18, 2004



2 TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis

jobs is to minimize two components: the sum of the differences between goal response times of
clients and the effective service time provided by Xerox and the sum of travel times. The way
in which Xerox assigns their jobs is determined by the currently relative position of clients in
a queue kept by the dispatcher sorted by priority.

Service times depend on the specific failure of the visited machine, as the final service (repair)
time not always matches the description of the failure provided by the client at the time of
the request. Once the repairman reaches a specific machine to be repaired, he can estimate
the repair time with much more certainty. Travel times are estimated from historic data of
the company.

Recent technological advances in communication systems and information management now
allow the exploitation of real-time information for dynamic vehicle routing and scheduling. A
very exhaustive review of the various approaches for solving problem of this type s found in
Gendreau et al. (1998b).

Broadly speaking, we found two major approaches for solving the problem. One research
line is based on queuing theory, focused on the study of the Dynamic Traveling Salesman
Problem (DTSP)(Pasaraftis, 1988) and on the Dynamic Traveling Repairman Problem
(DTRP) (Bertsimas and Van Ryzin, 1991). Then assignment policies depend on both the
spatial and temporal distribution of the calls and on the observed work load. There are
no real applications of this solution approach in the industry so far. A second algorithmic
approach is based upon finding reasonable routes to be followed by each technician every time
a new call enters the system, using insertion techniques and metaheuristics, such as Tabu
Search (Gendreau et al., 1999) or Ant System (Montemanni et al., 2002).

Real application of the last approach for dynamic dispatch of vehicles can be found in
Weintraub et al. (1999), developing a system based on insertion heuristics for an electrical
distribution company, and also in Madsen et al. (1995) that develop heuristics for dispatching
technicians of a gas distribution company.

The focus of this research follows an algorithmic approach, in which the decision maker updates
some predefined routes for each technician every time a new request enters the system. The
general scheme of the algorithm is shown in figure 1.

Figure 1: Generating initial routes

The modeling scheme was adapted from the classical formulation of the VRPSTW (Cordeau
et al., 2002), by considering the following adjustments:

• For this problem, only the upper bound of the soft time window (related to the goal
response time of each client) is considered, since the objective is to serve each requirement
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as soon as possible.

• Service times are quantitatively longer and less accurate than travel times, therefore the
former will play a more relevant role than the latter into the proposed decision rules.

Let I = {m1, . . . ,mk,mk+1, . . . ,mI ,mI+1} denote the set of machines, and let K = {t1, . . . , tk}
be the set of technicians. The set {m1, . . . ,mk} includes those machines being currently
repaired by a technician, while {mk+1, . . . ,mI} represents the set of machines waiting in
queue. mI+1 is simply a fictitious machine representing the final stop of each technician’s
route. Additionally, let bi be the upper bound of the time window associated with machine
i and si, the expected repair time for machine i. The technician specialization is modeled
through the binary parameter cki which is 1 if technician k is able to repair machine i, 0
otherwise. Let tij be the travel time from machine i to machine j. The end of the working
day is L. There are two types of variables in this model: flow variables xijk, equal to 1 if
technician k attends client i and client j sequentially, 0 otherwise; and two temporal variables
wij which is the time when technician k visits client i; and δik that represents the violation of
the soft time window of client i by machine k.

Thus, the formulation is as follows:

min
x,δ





∑

k∈K

∑

i∈I

δik + β
∑

k∈K

∑

i,j∈I

tijxijk



 (1)

subject to

∑

k∈K

∑

j∈I

xijk = 1 ∀i ∈ {I\mI+1} (2)

∑

i

xijk −
∑

i

xjik = 0 ∀j ∈ {mK+1, . . . ,mI} ,∀k ∈ K (3)

∑

j∈I

xijk = 1 {i ∈ {m1, . . . ,mK} , k ∈ K\ i = mp, k = to ⇔ p = o}

(4)

wik + si + tij − wjk ≤ (1 − xijk) ∗ M ∀i, j ∈ I,∀k ∈ K (5)

xijk ≤ cjk ∀i, j ∈ I,∀k ∈ K (6)

wik ≤ L
∑

j∈I

xjik ∀i ∈ I,∀k ∈ K (7)

δik ≥ [wik − bi] ∀i ∈ I,∀k ∈ K (8)

xijk ∈ {0, 1}

wi,k, δi,k ≥ 0 ∀i, j ∈ I,∀k ∈ K (9)

The objective function (1) account for the total cost, that is the sum of violation of the soft
time windows and travel time. Constraints (2) restrict the assignment of each machine to
exactly one vehicle link. Next, constraints (3) and (4) characterize the flow on the path to
be followed by technician k, that is (3) forces each client to be served by only one technician
and (4) characterize the initial client of each route. Additionally, constraints (5) guarantee
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schedule feasibility with respect to time considerations (Cordeau et al., 2002) and constraint
(6) insure that only qualified technicians can be considered for each repair job. Note that
for a given k, constraints (7) force wik = 0 whenever machine i is not visited by vehicle k.
Constraints (8) characterize the violation of the soft time window. Finally, (9) impose binary
conditions on the flow variables, and the positive nature of time variables.

As shown in the past, the VRPTW problem is NP-Hard (Savelsbergh, 1985), which implies that
under real conditions it is hard to find the optimal solution, particularly in dynamic systems
when a real time response is needed. In order to deal with such a problem, we propose a
Dantzig-Wolf decomposition, where the master problem is given by (1)-(2), i.e, the objective
function (1), and the set covering of machines (2), in which each machine i ∈ I is covered
exactly once. The sub-problem is a model that generates feasible routes for each technician.
Analytically:

Master problem: Choosing routes for each technician among a pool R.

min
∑

r∈R

crxr (10)

s.t.
∑

r∈R

∂irxr = 1 i ∈ I (11)

xr ∈ [0, 1] ∀r ∈ R (12)

Where xr is a binary variable indicating if route r ∈ R is chosen. Each route starts at the
initial position of the corresponding technician. ∂ir is a binary parameter that indicates if
route r contains machine i and cr is the cost of route r. This problem is an integer problem
solved using CPLEX 7.5 for the problem instances in reasonable time.

Sub Problem: Generate routes with minimum marginal cost. Solving the master problem over
the current set of columns by using the simplex method gives the dual variables associated
with constraints (11) necessary for the solutions of the subproblem. The subproblem generates
the optimal route, by minimizing both time window violation and travel time minus the sum
of dual variables of the clients in such a route, subject to (3)-(8). After this process, a route
with minimum marginal cost is generated. If the computed marginal cost were negative then
there would exist the possibility of improving the objective function of the master problem by
adding this new column.

The model is formulated under a Constraint Programming framework (CP). This problem is
NP-hard, and for instances of great size the computation time for setting the optimal solutions
could be very high. However, in this case the size of each column generation problem is in the
range of three to seven machines, which allows us to obtain the optimal solutions in a very
short time (less than one second). This problem is solved using ILOG Solver 5.2.

The Constraint Programming constraints are based on the logical relations of the problem. In
particular, the time windows constraint aid significantly in reducing feasible solutions. This
implies that in the search tree a large percentage of nodes are eliminated.

Then, the subproblem generates an optimal route of length measured in number of clients
visited L , as described below, which minimizes time window violation along with the travel
time of serving that route minus the sum of dual variables of the clients in the route.
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The General Process: Next, a summary of the general scheme of solution is described.

1. Generate a pool of initial routes:

Let C is the average number of machines to be served by each technician, and A indicates
a range of reasonable positions from this average.

For all machine m_i{

For all technician t_k{

For all L in [C-A,C+A]]{

Create with CP a new route of length L,

which starts at the present position of

a technician t_k and includes machine m_i.

//check if route has not been created before,

otherwise generate new route.

}

}

}

By running this routine, the feasibility of the solution is assured, in fact, there exist
at least one route containing each machine .The above described procedure is shown in
figure 2.

Figure 2: Generating initial routes

For this route mi must be in some position between 2 and L.

2. Solve a linear relaxation of the master problem with the generated pool of routes.

3. From the dual variables associated to the constraints of each machine in the master
problem, generate new routes with the minimum reduced cost, adapted from the sub-
problem. If there exists a route with negative reduced cost cr∗ , go to 4, otherwise go to
5.

Le Gosier, Guadeloupe, June 13-18, 2004



6 TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis

4. Using the sub-problem generate all possible columns with reduced cost cr less than
cr∗γ, and length L , where γ is a control parameter that satisfies 0 < γ < 1, thus
cr ∈ [cr∗, cr∗γ] < 0 . This helps control the number of columns generated in each
iteration. If cr∗ is a large negative number, it may be convenient to generate many
columns in a range [cr∗, cr∗γ], where will be large negative numbers. Go to 2.

5. Solve IP associated with the master problem including all the columns generated in the
previous steps, obtaining the final routes to be followed by each technician.

The running time of this procedure lies in the range between 30 and 120 seconds. Considering
that decisions have to be taken dynamically, we decided to run the code only if the number
of new request was high enough (10 new machines for example). Otherwise, the new service
requests were inserted into the current routes using a procedure based on GENIUS-CP (Pesant
et al., 1997; Gendreau et al., 1992, 1998a). Potential segments of insertion were chosen
considering all pieces of route located close enough (in both senses space and time) from
the location (time) of the new request. After checking all potential segments in time and
space, the one with the minimum insertion cost is assigned to serve the new request, and the
specific route is adapted accordingly.

The model was coded in ILOG Opl and solved using ILOG Cplex 7.5 and Solver 5.2. In our
results, each technician was assigned not more than five machines per day. For higher number
of total requests it was necessary to reschedule some of the machines for the next day, as not
all could be served.

The consistency of the Column Generation approach was empirically checked by observing
how the method converges to the optimal solution in case of small size problems. In fact,
for small instances the optimal solution was obtained directly by solving the original Mixed
Integer Problem (equations (1) to (9)). The next figure shows the rate of convergence of the
CG method as a function of the number of iterations for a problem of twelve clients and three
technicians, which is contrasted against the solution obtained from the exact model ER.

Figure 3: Convergence trend of the proposal method

Next, an example of the application of this scheme is shown, considering a first complete run
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at the beginning of the day (time 0), where the length of the day is 600 minutes, repair times
fluctuate between 10 and 120 minutes, with goal response times between 0 and 600 minutes
depending on different client priorities. The solution shows no time window violations and a
very reasonable route pattern as well as a balanced distribution of assignments (see figure 4).
The process time of this example was 25 seconds in a Pentium IV 2.2 MHz, 256 KB in RAM.

Figure 4: Graphical representation of an example. (Left. Clients) (Right. Generated Routes)

This paper is part of an ongoing project. Currently, we are incorporating the stochastic nature
of repair times as well as the uncertainty of future and unknown demand into the problem by
using techniques in the line of robust optimization.
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