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1  Introduction 

The vehicle routing problem (VRP) involves finding a set of routes, starting and ending at a depot, 
that together cover a set of customers. Each customer has a given demand, and no vehicle can 
service more customers than its capacity permits. The objective may be to minimize the total 
distance travelled or the number of vehicles used, or a combination of these. In this paper, we 
consider the vehicle routing problem with time windows (VRPTW), which is a generalization of 
the VRP. A solution to the VRPTW must ensure that the service at any customer starts within a 
given time interval, called a time window. We assume that the time window is hard, i.e. if the 
vehicles arrives too early, the vehicle must wait until the time window opens, and it is not allowed 
to arrive late. In the case of soft time windows these can be violated, but then a penalty is imposed. 
The VRPTW appears in many real life situations, for example deliveries to supermarkets, bank 
and postal deliveries, industrial refuse collection, school bus routing, security patrol service, and 
urban newspaper distribution. 
 
In this paper we will focus on an exact method for the VRPTW. Exact methods for solving the 
VRPTW dates back to Kolen, Rinnooy Kaan, and Trienekens (1987). They were able to solve 
quite small problem instances to optimality (up to 15 customers). The method was based on 
dynamic programming and state space relaxation. In this paper we will concentrate on methods 
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based on column generation. The most successful exact column generation approaches for the 
VRPTW have been based on constrained shortest path relaxations. Desrochers, Desrosiers, and 
Solomon (1992) used a column generation  (Dantzig-Wolfe decomposition) scheme. Halse (1992) 
implemented a decomposition based on variable splitting (also known as Lagrangean 
decomposition). Kohl and Madsen (1997) developed an algorithm exploiting Lagrangean 
relaxation. Kohl, Desrosiers, Madsen, Solomon, and Soumis (1999), Larsen (1999), and Cook 
and Rich (1999) implemented a Dantzig-Wolfe based decomposition algorithm. Kallehauge 
(2000) developed an algorithm based on a combination of Lagrangean relaxation and 
Dantzig-Wolfe decomposition. In all seven cases, the resulting subproblem was a shortest path 
problem with time window and capacity constraints. The subproblem solution forms a part of the 
column generation. Even though the subproblem is NP-hard, a pseudo polynomial algorithm 
exists for one of its relaxations.  

2  The model 

The problem is formulated as a mixed integer programming problem like in Desrochers, 
Desrosiers and Solomon (1992). The model contains two decision variables. A triple indexed 
zero-one variable indicating if a specific vehicle drives directly from a specified customer to 
another specified customer. And a double indexed variable indicating the time a specific vehicle 
starts servicing a specific customer. The constraints are 
  

• each customer is serviced exactly once 
• every route originates and ends at the depot 
• flow conservation is observed 
• the time windows of the customers are observed 
• the capacity constraints of the vehicles are observed 

 
For a reasonably sized real instance the model has very large dimension making it impossible to 
solve the model directly by standard software. However the model is structured in such a way that 
the only coupling constraints are the constraints ensuring that each customer is serviced exactly 
once. The remaining constraints are only dealing with one vehicle at a time. This means that it is 
very tempting to use Lagrangean relaxation (LR) or decomposition (for example Dantzig-Wolfe 
decomposition) such that the problem can be decomposed into a subproblem (a shortest path 
problem with resource constraints) for each vehicle and a master problem (finding new 
multipliers). If the vehicles are identical as in the present case all the subproblems will be 
identical and therefore it is only necessary to solve one subproblem. The solution of the 
subproblem will result in generating new columns to be used in the master problem and it will 
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provide us with a lower bound for the optimal value of the objective function. In this paper we 
will use Lagrangean relaxation where the customer assignment constraints are relaxed. 

3  The master problem 

The master problem consist of determining new multipliers. This can be done by subgradient 
optimisation, bundle methods, or trust region methods. According to our experience the 
convergence of subgradient optimisation is very slow in this problem area. We have chosen to 
apply a trust region method, which in this case results in solving an LP problem in each master 
iteration. This approach is very similar to the column stabilization approach for the dual problem. 

4  The subproblem 

The subproblem is an elementary shortest path problem with time windows and capacity 
constraints (ESPPTWCC) where elementary means that each customer can only participate at 
most once in the shortest path. The problem is NP-hard. The usual approach is to change the 
problem slightly by relaxing some of the constraints by allowing cycles. Even though there is a 
possibility for negative cycles in the graph the time windows and the capacity constraints 
prohibits infinite cycling. Of course the above mentioned relaxation will not result in a lower 
bound as good as the lower bound obtained from ESPPTWCC. A compromise could be to forbid 
cycles of small length (i.e. with a small number of arcs in the cycle). In our approach we have 
eliminated cycles containing 2 arcs.  
 
The computational time needed for solving the subproblem is increasing if the customer demand 
is small compared to the capacity of the vehicle (i.e. many customers on each route), if the time 
windows are wide, and if there are many negative cycles in the network. 

5  Branch and bound and acceleration strategies 

The column generation approach does not automatically guarantee integer solutions. Often 
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solutions obtained will be fractional. Therefore a branch and bound framework was established. 
In our approach the following strategies were used: 
  

• Branching on the number of vehicles 
• Branching on flow variables 
• Branching on time windows 

 
To speed up the computation the following acceleration strategies have been used in our 
approach: 
 

• Preprocessing to tighten the time windows 
• Stopping in the subproblem before optimality as long a negative marginal cost is found 

6  Improving the lower bound 

In order to reduce the number of nodes in the branch and bound tree and to speed up he solution 
process it is recommended to introduce additional constraints, usually in the master problem. In 
the previous work 2-path cuts have been applied (Kohl, Desrosiers, Madsen, Solomon and 
Soumis, 1999) in the root node with some success. In this paper we will introduce the following 
new constraints both in the root node and the other nodes in the branch and bound tree: 
 

• 2-path cuts in all the branch and bound nodes 
• infeasible path elimination constraints 
• odd CAT constraints 
• lifted cycle constraints 
• precedence constraints 

 
Computational experience shows that these additional constraints will reduce the branch and 
bound tree and speed up the computations considerably. 
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7  Computational results 

In the paper the above mentioned solution approach will be tested on the Solomon test instances 
and on some of the Homberger instances. The results show a considerable improvement in 
computational time and a possibility to solve yet unsolved instances. 

References 

W. Cook and J. Rich, “A parallel cutting-plane algorithm for the vehicle routing problem with 
time windows”, Technical Report TR99-4, Department of Computational and Applied 
Mathematics, Rice University 1999. 
 
M. Desrochers, J. Desrosiers and M. Solomon, “A new optimisation algorithm for the vehicle 
routing problem with time windows”, Operations Research 40, 342-354 (1992). 
 
K. Halse, “Modeling and solving complex vehicle routing problems”, Ph.D. thesis, Institute of 
Mathematical Statistics and Operations Research, Technical University of Denmark (1992). 
 
B. Kallehauge, “Lagrangean duality and non differentiable optimisation – applied to vehicle 
routing”, Master Thesis (in Danish), Informatics and Mathematical Modelling, Technical 
University of Denmark (2000). 
 
N. Kohl, J. Desrosiers, O.B.G. Madsen, M. Solomon and F. Soumis, “2-path cuts for the vehicle 
routing problem with time windows”, Transportation Science 33, 101-116 (1999). 
 
N. Kohl and O.B.G: Madsen, “An optimisation algorithm for the vehicle routing problem with 
time windows based on Lagrangean relaxation”,  Operations Research 45, 395-403 (1997). 
 
A.W.J. Koolen, A.H.G. Rinnooy Kaan and H.W.J.M. Trienekens, “Vehicle routing with time 
windows”, Operations Research 35, 266-273 (1987). 
 
J. Larsen, “Parallellization of the vehicle routing problem with time windows”, Ph.D. thesis, 
Informatics and Mathematical Modelling,  Technical University of Denmark (1999). 
 


