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When trying to evaluate the potential benefits of an infrastructure project involving dedicated
lines for buses or of a new public transport management policy such as a bus priority at
traffic signals, one needs to use a model able to calculate the resulting congestion (in terms of
density), some travel times (or mean speeds) for vehicles or for the bus, etc.

Such a model needs to represent the mutual effects between a bus and the surrounding traffic
flow. Indeed, a congested flow can prevent a bus to drive at its desired speed and, conversely,
a bus can generate some congestion because it reduces locally the capacity of the road when
driving slower than the surrounding vehicles.

In the LWR (Lighthill, Whitham [9] and Richards [11]) traffic flow model framework, some
researches have been made to extend the homogeneous representation of the traffic flow by
taking into account the buses as punctual moving bottleneck. Leclercq et al. [8] proposes a
review of these different studies and try to present a unique frame to put them together. This
paper will focus on the numerical resolution of this LWR moving bottleneck model.

The basic LWR model is classically solved by using the Godunov scheme [6]. This scheme
is based on a spatial discretization (grid of cells) of the different links of the network. Some
researches have been lead to extend this scheme by taking into account a moving bottleneck
[2, 1]. These works come up against the difficulty to deal with a moving singularity inside
a fixed grid of cells. We have so decided to explore another way to solve the LWR moving
bottleneck model by using the principle of the “wave tracking” method. In fact, this method
uses an event discretization which seems to be well adapted to deal with moving bottlenecks.

We will first shortly review the LWR model and its extension in order to represent a bus and
its influence on the surrounding traffic flow. Then, we will present the wave tracking method
and explain how it can be applied to the bus modelling issue. We will finish by illustrating
the method on a small theoretical application.
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1 The LWR model and its extension for bus modelling

The LWR model considers traffic as a homogeneous and continuous stream, characterized by
three variables: the flow Q(x, t), the density K(x, t) and the flow speed V (x, t). The basic
model equations are

• The conservation equation:
∂K(x, t)

∂t
+

∂Q(x, t)

∂x
= 0.

• The flow definition: Q(x, t) = K(x, t).V (x, t).

• An equilibrium (fundamental) relation QE : Q(x, t) = QE(K(x, t)), which represents all
the equilibrium situations traffic could encounter depending on the road configuration.

Those equations can be synthesized into the following non-linear, hyperbolic conservation
equation:

∂K(x, t)

∂t
+

∂QE(K(x, t))

∂x
= 0 (1)

The basic LWR model only describes the evolution of a homogeneous traffic flow. An extension
of this model has been proposed by Newell [10], Lebacque et al. [7] and more generally by
Leclercq et al. [8] to take account of the effect of a moving obstruction corresponding to
slower vehicles (buses, lorries. . . ). This extension considers that the traffic states nearby this
bottleneck are described by a unique diagram (further called the bottleneck diagram) which
does not depend on the speed Vbus of the bottleneck.

With only this hypothesis, it is possible to deduce the traffic states (K ∗

U
, Q∗

U
) upstream,

(K∗

D
, Q∗

D
) downstream and (K∗

A
, Q∗

A
) nearby the moving bottleneck. In fact, it is possible

to demonstrate [7, 8] that the relative flow q = QU − KUVbus = QD − KDVbus is conserved
on both sides of the moving bottleneck. Furthermore, when the moving bottleneck is active
(that is the case where the traffic states are different on both side of the bottleneck due to
its presence), the upstream and downstream traffic states are associated with an equilibrium
state on the bottleneck diagram where the relative flow is maximal.

The two above properties can be translated graphically by using the fundamental diagrams.
The conservation of the relative flow imposes that the traffic states upstream, downstream
and nearby the moving bottleneck are linked by a straight line whose slope is Vbus, which is
called the capacity line (cf. Figure 1). As the relative flow is maximal when the bottleneck is
active, the straight line is necessarily tangent to the bottleneck diagram. The tangential point
describes the traffic state along the moving bottleneck.

To sum it up, two states are possible:

• If density is between K∗

D
and K∗

U
the bottleneck is active, then the bus constrains the

traffic,

• Otherwise, the bus has no effect on the traffic and just drives at its own speed.

It is to remember that the bus can never go faster than the other vehicles, so that if density
is too high, its speed is reduced to the traffic speed.
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Figure 1: The LWR moving bottleneck model

2 Application of the wave tracking method to the bus mod-

elling issue

2.1 The wave tracking method

The wave tracking method (WT) is a numerical method for the resolution of hyperbolic con-
servation equations which is based on an explicit propagation of shock waves in the space-time
diagram.

Since the speed of shock waves is constant (following the Rankine-Hugoniot formula), they
propagate linearly. On the contrary, the frontier of a rarefaction fan is in general not linear
and might be quite hard to handle. However, when the flux function is piecewise linear, it
appears that the rarefaction fan is composed of constant density zones separated by shock
waves.

Thus the idea of the WT method is to approximate the flux function by a piecewise linear
function so that there are only shock waves which are easy to propagate. This method has
been recently applied in particular to the LWR traffic flow model [3] and can be summarized
as followed:

• The fundamental diagram is approximated by a piecewise linear function.

• Density jumps are solved locally and result in the generation of linear shock waves
separating constant density zones.

• Each wave propagates linearly till it meets another one (generating a new density jump)
or an exogeneous event occurs (change of the color of a traffic signal, beginning of an
incident, etc.)

• The propagation is calculated till there is no more wave (and there is only one constant
density zone) or till the desired end of the simulation is reached.

The method is proved to converge towards the entropic solution when the approximated fun-
damental relation tends to the initial one [4].
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2.2 Application to the bus modelling

The WT method is quite easy to apply to the representation of a bus driving inside a traffic
flow. Indeed, its trajectory can be considered as a special wave which is also linear.

Like other vehicles, the bus has a constant speed inside a constant density zone, expect if for
example the bus stops to drop or get some passenger. So that, in general, the trajectory of a
bus is piecewise linear in the space-time diagram.

Hence, we can consider this trajectory as a wave propagating the “bus” information (instead,
for example, of a density jump in the case of a classical shock wave).

When the bottleneck is active and the bus constrains the surrounding traffic flow, its trajectory
is a shock wave separating two distinct constant density zones (of density K ∗

U
and K∗

D
).

Otherwise, it is just an information propagating at the bus speed and the densities upstream
and downstream are identical.

In addition to the propagation of waves, we have to consider the following events:

• Some bus related events:

– intersection of the trajectory of a bus with a shock wave (coming indifferently from
upstream or downstream),

– insertion of a bus into the traffic (exit of a bus lane),

– vanishing of a bus out of the traffic (entrance into a bus lane),

– change of speed of the bus (for example at a bus stop or because of an up-hill ramp)

• Other events not related to the bus:

– intersection of two shock waves

– exogeneous events (beginning of an incident, change of the color of a traffic signal,
etc.)

2.3 Resolution of the WT method

An important hypothesis of the WT method is that events can be solved “locally”, which
implies that they can be solved sequentially, even if they happen at the same time. This
property is due to the finite speed of propagation of information (through the different waves)
and is still valid when considering a bus inside a traffic flow (cf. [4, p. 37])

Let us denote by (x, t) the position of an event in the space-time diagram.

Solving an event not related to the bus results in the resolution of the following Riemann
problem:

R(x, t) :

{

∀ξ < x, K(ξ, t) = KU

∀ξ > x, K(ξ, t) = KD

(2)

Such a problem is classically solved in the WT method by generating a new shock wave (if
KU > KD) or a set of new diverging shock waves (if KU < KD).
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For some bus related event, the following extended Riemann problem has to be considered:

Rbus(x, t) :











∀ξ < x, K(ξ, t) = KU

∀ξ > x, K(ξ, t) = KD

xbus(t) = x

(3)

It can be shown that such a problem can be solved sequentially by first solving the simple
Riemann problem (without bus), and then introducing the bus inside a constant density zone
and considering the mutual effects between the bus and the surrounding traffic inside this
zone.

The resolution can then be described as follows:

1. Solve the classical Riemann problem R(x, t). This generates waves originated at (x, t).

2. Identify the constant density zone Z inside which the bus is entering. Denote by KZ its
density and by VZ the speed of vehicles inside it.

3. Consider the mutual effects between the bus and the traffic:

• If the traffic is too dense in the zone to allow the bus to drive at its desired speed
(that is VZ < Vbus). Then reduce the speed of the bus to the speed of the surround-
ing flow: Vbus := VZ . Then the wave corresponding to the bus trajectory is not a
shock wave and is parallel to the trajectory of any other vehicle.

• If density of the traffic is such that it can flow around the bus without constraint
(that is KZ < K∗

D
or K > K∗

U
), then the bus propagates at its own speed and there

is no density jump (the bus wave is not a shock wave).

• Otherwise, the bottleneck is active and the traffic is constrained by the bus, two
zones are created directly upstream and downstream the position of the bus of
respective densities K∗

U
and K∗

D
. This introduction generates two new Riemann

problems just upstream the bus (x−) and downstream (x+):

R(x−, t) :

{

∀ξ < x−, K(ξ, t) = KZ

∀ξ > x−, K(ξ, t) = K∗

U

(4)

and

R(x+, t) :

{

∀ξ < x+, K(ξ, t) = K∗

D

∀ξ > x+, K(ξ, t) = KZ

(5)

Those Riemann problems can result in the generation of one or several shock waves.

One possible flaw of the method could be the generation of a very high number of waves which
would mean that it is practically impossible to use. Empirically, an order of magnitude of the
number of generated waves has been observed to be close to the product of the number of
exogeneous events by the number of segments in the fundamental diagram approximation
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3 Application

On the contrary to the classical Godunov scheme, the WT method is based on events and not
on a fixed discretization grid. Thus it is quite more complicated to implement into a computer
program, but not impossible (one can refer to [5] for an example of a detailed implementation).

We have developed an object-oriented program (in C++) in order to manage the different
events, the resolution of the Riemann problems as well as the generation and propagation of
shock waves.

Such a program can represent traffic signals, incidents, capacity reduction (fixed and moving
bottlenecks) and can easily be extended in order to incorporate other types of events as soon
as they can be described in term of Riemann problems.

We made a simulation on a simple theoretical case in order to represent the possibility of the
method. Figure 2 depicts the moving of a bus, stopping and moving off at a traffic signal (NB:
in order to isolate the effects of the bus, only one red phase has been represented).

Calculations have been made by considering a 100 point approximation of the fundamental
diagram and result in the generation and treatment of less than 200 events and constant density
zones. Such a thin approximation makes the space-time diagram almost smooth (whereas it
is still piecewise linear).

4 Conclusion

This article shows that a numerical scheme based on the wave tracking method is very efficient
to solve the LWR moving bottleneck model. In fact, this method uses an event discretization
where modifications in the traffic behaviour are propagated by waves. As the moving bot-
tleneck can be considered as a particular wave propagating the “bus information” (jump in
density and position when the bottleneck is active or only position in the other case), the
numerical resolution of this extension to the LWR model is quite straightforward.
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Figure 2: Trajectory of a bus inside a traffic flow stopping at a traffic signal. (A) The bus is
stopped because of the queue forming behind the traffic signal. (B) The bus can move off, at
the speed of the traffic at the beginning and at its desired speed afterwards. (C) The traffic is
too dense to pass anymore through the bottleneck: two constant density zones are generated
(K∗

U
and K∗

D
). (D) The bus exits the fan due to the traffic signal
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