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1 Introduction

There is no denying a renewed interest in toll roads, either managed by governments or private
societies. Toll roads may help alleviate congestion while putting the monetary burden on the
actual users of the infrastructure.

In this presentation we consider the problem of determining a set of optimal tolls on the arcs of
a multicommodity transportation network. The problem involves two decision makers acting
non cooperatively and in a sequential way. More precisely, we consider the situation where the
owner of a private toll highway seeks to maximize revenues raised from tolls set on a subset
of arcs of a transportation network, while the commuters aim to travel at minimum cost from
their origin to their destination.

This sequential and non cooperative decision-making process can be adequately represented as
a bilevel program. It has been introduced by Labbé et al. [4] and applied to the determination
of optimal tariffs for a single commodity (respectively multicommodity) transportation prob-
lem by Brotcorne et al. [1] and [2]. Recently it has been proved to be an NP Hard problem
by Roch et al. [6].

An assumption underlying our model is that congestion is not affected by the rerouting that
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could result from the introduction of tolls. An explicit account of congestion would radically
transform the mathematical nature of the model and calls for entirely different algorithmic
approaches. Note that model involving congestion issues has for example been recently studied
by Chen and Bernstein [3].

In this presentation, we first present the bilevel model for the toll setting problem we consider.
Next, we describe a local search algorithm which could be embedded in a metaheuristic proce-
dure. Finally we present some numerical results. Let G = (N ,A) be a transportation network
where N is the node set and the arc set A is partitioned into the subset A1 of toll arcs and
the subset A2 of toll-free arcs. With each arc a of A1 is associated a generalized travel cost
composed of a fixed part ca representing the minimal travel cost per unit and an additional
unknown toll Ta, converted to time units. Any arc a of A2 bears a fixed unit travel cost da.

Let K denotes the set of commodities. Each commodity k is associated with and origin-
destination pair (o(k), d(k)). The demand vector bk associated with each commodity k is
specified by:

bk
i =















nk if i = o(k),

−nk if i = d(k),

0 otherwise,

where nk represents the total number of users of commodity k. Finally, xk
a denotes the number

of users of commodity k on arc a ∈ A1 and yk
a denotes the number of users of commodity k

on arc a ∈ A2.

Assuming that demand is fixed, users are assigned to shortest paths linking their departure and
arrival nodes, for given values of the tolls Ta set at the upper level of decision-making. Based
on the above notation, the toll setting problem (TSP) can be formulated as a bilevel program
with bilinear objectives and linear constraints, where it is understood that the commodity
flows xk

ij must be part of an optimal solution of the lower linear program parameterized by
the upper level toll vector T :

TSP: maxT,x

∑

(i,j)∈A1

Tij

∑

k∈K

xk
ij

minx,y

∑

k∈K

(
∑

(i,j)∈A1

(cij + Tij)x
k
ij +

∑

(i,j)∈A2

dijy
k
ij)

s.t.
∑

(i,j)∈A

(xk
ij + yk

ij) −
∑

(j,i)∈A

(xk
ji + yk

ji) = bk
i ∀i ∈ N , ∀k ∈ K,

xk
ij ≥ 0 ∀k ∈ K, ∀(i, j) ∈ A1,

yk
ij ≥ 0 ∀k ∈ K, ∀(i, j) ∈ A2.

The leader’s objective is to maximize the total revenue which is the sum of the products
between toll Ta and the number of users on arc a. The objective of the follower is to minimize
the total cost of the paths selected by the network users. The constraints of the follower’s
problem are derived from flow conservation (demand) and flow nonnegativity.

In the remainder, we assume that there cannot exists a tariff setting scheme that generates
profits and creates a negative costs cycle in the network, and that there exists at least one
path composed of free arcs for each origin-destination pair. These assumptions imply that the
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lower level optimal solution corresponds to a set of shortest paths and that the upper level
profit is bounded from above.

While the leader and the follower act in a noncooperative fashion, we assume that, faced with
two equally (un)attractive alternatives, the follower will select the path that yields the highest
revenue for the leader, i.e., in all likelihood, the quickest. This assumption is not unrealistic
in that, given two equivalent paths, the one generating the highest revenue could be made the
most attractive through a minute reduction of one of its tolls.

Finally, we assume that the ‘value-of-time’ parameter, that allows the conversion from time
to money unit, is uniform through the entire population of network users. Our methodology
could quite easily been extended to more general situation where users are distributed into
classes, each endowed with its own perception of the value of one time unit. In this generalized
model, commuters associated with the same origin-destination pair could yet be assigned to
different paths.

2 Inverse Optimization Program

The interaction between the leader and the follower is twofold. First, for given tolls, the
follower solution corresponds to a set of commodity shortest paths.

Next, for each follower solution lying in the inducible region1, the best vector T consistent with
the lower level solution can be obtained by solving an inverse linear program, formulated as
follows. First, let us replace the lower level program by its primal-dual optimality conditions.
Denoting by λ the dual vector associated with the flow conservation constraints this yields,
for fixed arc flows, the single level problem

OPTINV : max
T, λ

∑

k∈K

∑

a∈A1 |xk
a=1

nkTa =
∑

k∈K

nk(λk
d(k) − λk

o(k))

s.t. λk
j − λk

i ≤ cij + Tij ∀k ∈ K, ∀(i, j) ∈ A1, |x
k
ij = 0

λk
j − λk

i ≤ dij ∀k ∈ K, ∀(i, j) ∈ A2|y
k
ij = 0

λk
j − λk

i = cij + Tij ∀k ∈ K, ∀(i, j) ∈ A1|x
k
ij = 1

λk
j − λk

i = dij ∀k ∈ K, ∀(i, j) ∈ A2|y
k
ij = 1.

The dual problem of (OPTINV) is:

DOPTINV : min
z

∑

k∈K

∑

(i,j)∈A

ci,jz
k
ij

s.t.
∑

(i,j)∈A

zk
ij −

∑

(j,i)∈A

zk
ji = bk

i ∀i ∈ N ,∀k ∈ K

∑

k∈K

zk
ij = 0 ∀(i, j) ∈ A1

zk
ij ≥ 0 ∀k ∈ K, ∀(i, j) ∈ A1|x

k
ij = 0

1The inducible region of a bilevel program consists of feasible solutions whose lower level component is

optimal for the lower level problem.
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zk
ij ≥ 0 ∀k ∈ K, ∀(i, j) ∈ A2|y

k
ij = 0

zk
ij free ∀k ∈ K, ∀(i, j) ∈ A1|x

k
ij = 1

zk
ij free ∀k ∈ K, ∀(i, j) ∈ A2|y

k
ij = 1.

In the case of a single commodity, the above program can be solved through shortest path com-
putations. The efficiency of the method will then rely on efficient shortest path reoptimization
procedures [5], which have been adapted to able the detection of negative cost cycles. In the
multicommodity case, DOPTINV can be solved efficiently by Dantzig-Wolfe decomposition.

3 A local search algorithm

In its local search phase, the algorithm moves to a neighbour of the inducible region that yields
a higher leader revenue. It is based on the characterization of feasible followers solutions as a
set of commodity paths. The move from a feasible solution to an improved neighbour solution
is achieved by forcing the entry of a nonbasic arc in a commodity shortest path tree rooted at
the origin node of that commodity, and appropriately removing a basic arc. The evaluation
of a move is performed by solving the inverse optimization program described in the previous
section.

Two strategies, ‘first improvement’ and ‘best improvement’, have been tested. In each of these,
a partial evaluation of the current neighborhood is performed. More precisely, the inverse
optimization program is solved either on a cluster of commodity (CIO) or by considering each
commodity at a time (SIO). The latter strategy is motivated by the efficiency of the solution
procedure for the inverse optimization program in the single commodity case.

4 Numerical Results

To assess the efficiency of the method, preliminary results on instances that can be solved
to optimality using a mixed integer formulation of the (TSP) are provided in Table 1. We
consider a set of randomly generated grid networks with 60 nodes (5 × 12), 208 two-way arcs
and 10 origin-destination pairs. The proportion of toll arcs varies from 5% to 10%, and the
initial solution is defined as the follower solution corresponding to zero tolls.

We report the results for the two neighborhood evaluation strategies (CIO) and (SIO), together
with the exact solution of the MIP formulation using CPLEX. The last line of each subtable
contains the average statistics for the corresponding data set, while the first column provides
the percentage of toll arcs. The columns ‘T ime’ indicate the computation time in seconds
on an Intel 2 GHz Pentium 4 processor. For the Local Search Method, the column labels
‘%OPT ’ and ‘%I/OPT ’ refer respectively to the ratio of the heuristic objective (respectively
the heuristic initial solution) over the optimal solution. When the optimum value is not
obtained, it is replaced by the best lower bound achieved. This is denoted by a star (*) and a
nonzero duality gap ‘D.G.’. The label ‘#it′ refers to the number of iterations.

We observe that the Local Search produces quality solution quite rapidly.
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CPLEX CIO SIO

%T D.G. Time %I/OPT %OPT #it Time %OPT #it Time

0.00 3 0.81 1.00 19 6 0.94 14 4

0.00 4 0.75 1.00 15 3 1.00 20 6

0.00 10 0.82 1.00 15 6 1.00 13 4

0.00 4 0.61 1.00 18 11 1.00 13 5

0.00 4 0.99 0.99 10 6 0.99 10 3

5 0.00 5 0.79 0.99 15 7 0.98 14 5

0.00 202 0.94 1.00 15 9 1.00 12 3

0.00 2987 0.60 0.97 20 15 0.97 23 7

0.00 194 0.94 1.00 15 7 1.00 18 5

* 4.39 7223 0.68 1.00 23 21 0.91 14 5

0.00 3630 0.99 1.00 16 12 1.00 10 3

10 8.17 2847 0.83 0.99 18 13 0.97 15 5

Table 1: Grid Networks with 208 arcs, 60 nodes, 10 commodities
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