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1 Introduction

We consider the problem of toll setting that faces the operator of a privately owned trans-
portation network in order to maximize its profit. As the users of the network rationally react
to the imposed prices, the tolls should be high enough to have a good income but not so much
as compelling the users not to use the tolled arcs or the network at all.

In [4] this problem is considered in the case that users choose the shortest route which means
that congestion is neglected. This assumption allows them to cast the problem into the class
of bilevel optimization problems where both objective functions are bilinear.

In this work we introduce congestion effects through the assumption that travel times depend
on the flow and we suppose that the users choose their routes according to the standard
Wardrop principle.

We will show that the mathematical problem, which is no longer bilinear-bilinear, can be seen
as the maximization of a non-concave function which in general has an infinity of local optima
which are very far from the global optimum. Indeed, we study the geometric properties of the
upper level objective function defined implicitly as a function of the toll and we show that its
non-quasi concavity is an important drawback for standard algorithms.
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Nevertheless we prove that the problem has interesting geometric properties that can help
in the search for a global optimum. Using an analytical characterization of the lower level
solution we determine the cases where the problem is well posed and we propose an algorithm
that converges globally to the solution. We illustrate our work with two examples made upon
Braess-like networks.

2 The model

2.1 Traffic assignment

Given a transportation network, the traffic assignment problem (TAP) consists in determining
a flow that satisfies a given demand between certain pairs of origins and destinations and a
certain criterion. Let us consider a traffic network represented by the graph (N ,A) where N
is the set of nodes and A is the set of directed arcs (links). Each arc a is associated with the
positive real number ta (f) which is the travel time of the link as a function of the network
flow f. For certain pairs of nodes (p, q) there is a positive flow demand dpq from p to q. We call
C ⊂ N ×N the set of origin-destination pairs and we associate each pair with a commodity.
The TAP is now to determine a network flow fulfilling the travel demands and a prescribed
performance criterion

The performance criteria normally considered are two attributed to Wardrop. The first one,
based on the rational behavior of traffic, states that the users seek to minimize their own
travel times and it is known as the user equilibrium. The second one, known as the system

equilibrium, calls for the minimization of the total travel time. Even if those criteria are very
different (one is behavioral and the other normative) models that consider both criteria have
been very well studied in the context of Marginal Toll Pricing. Indeed, in this problem, tolls
are sought in order that ”selfish” routing approach ”social” routing (see [2] and [8]).

In this work we focus on the first principle of Wardrop that has the following mathematical
formulation (see [5])

minT (x) =
∑

a∈A

∫ xa

0 ta (s) ds (xa)

s.t.
Axpq = d̄pq,

xpq ≥ 0,∑
(p,q)∈C xpq = x.

(1)

where A is the node incidence matrix, xpq is the vector of flows for commodity pq, x is the
vector of total flows and d̄ is the vector of node potentials corresponding to the commodities.

2.2 Profit optimization

If a toll pa (possibly 0) is charged to each car traversing the arc a, the total profit will be
pT x =

∑
a∈A paxa. If we make the simplifying assumption that tolls are expressed in time

units, the travel times changes accordingly being now ta + pa. So for each given level of tolls

Le Gosier, Guadeloupe, June 13-18, 2004



TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis 3

there will be a traffic assignment and we can look for the toll that will maximize the total profit.
More precisely, we have to find the value of p such that pT x(p) =

∑
a paxa(p) is maximum

where x(p) is the solution of the TAP parameterized by p, i.e., the problem (1) where the
travel time functions are now t(·) + p. As the problem (1) has a unique solution for each p,
we have that x(p) is differentiable and the convexity of T and the linearity of the constraints
also imply that it is convex (see [6]).

3 Analytical characterization of the solutions

In order to obtain an analytic formula for the solution of the lower level problem we will
suppose that the travel time functions are linear (affine). A more general problem could be
then approximated by linear functions and capacity constraints. In this case, using vectorial
notation, the problem (1) can be rewritten more compactly as

min
x∈X

1

2
xT Qx + (b + p)T x ,

where Q is a diagonal matrix with Qaa = qa and b = (ba) a vector such that ta(xa) = qaxa +ba,
p is the vector of prices over the arcs, and X is the polyhedron defined by the constraints in
(1), i.e., X = {x|Ax = d̄, x ≥ 0}.

For p ∈ R
n the lower level problem has a unique solution x(p) given by

x(p) = ProjQX(−Q−1(p + b)) = −Q−1[ProjQ
−1

P (p) + b] . (2)

Thanks to this formula we immediately see that in general for many prices we will have the
same distribution of traffic (for any p ∈ NP (p̄), the normal cone to P in p̄ ∈ P ), which explains
the infinity of local minima (when x(p̄)⊥ ∩ NP (p̄) is non empty). It can be also proved that
the profit function will be the supremum of concave functions. In the figure (1) we present
the function pT x(p) and the subdivision of the p-domain such that the function is quadratic
and concave (maybe linear) in each region.

Let P be the polyhedron in the price space given by P = −QX +b. For p ∈ P , it easily follows
that x(p) = −Q−1(p + b) and so the profit function will be quadratic and concave inside P .
What’s more, restricted to P , there is a bijective relation between prices and flows and for
any p we can obtain a p̄ ∈ P that gives the same profit. The idea behind the algorithm is to
exploit this biunivocity between flows and prices, i.e. between X and P .

4 Numerical applications

Intuitively we can see that when the problem is well posed, each commodity has at least one
route without tolled arcs. Otherwise the profit can be made as high as the operator may
want. Hence tolls have to be collected only in a subset of arcs or equivalently some prices
must be constrained to be zero. Models that consider elastic demand are always well posed,
that is clear because to put them in our formalism one artificial arc must be added for each
commodity, and these artificial arcs will constitute a non tolled route.
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