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1 Introduction

Discrete choice modelling is a powerful technique for describing how individuals perform a
selection amongst a finite set of alternatives; in particular, the multinomial logit and its exten-
sions are widely used, but the more powerful mixed logit modelling is gaining popularity among
practioners and researchers. However, since the inherent choice probabilities are multidimen-
sional integrals, the numerical cost associated with the evaluation of mixed logit models is
significant, even with Monte Carlo approximations. As a consequence, several researchers pro-
posed to use cheaper quasi-Monte Carlo approaches: Bhat (2001) and Train (1999) for instance
advocate using Halton sequences for mixed logit models This trend is not without drawbacks:
Bhat (2001) has pointed out that the coverage of the integration domain by Halton sequences
rapidly deteriorates for high integration dimensions and consequently has proposed a heuristic
based on the use of randomized scrambled Halton sequences; Hess et al. (Submitted) have
also proposed the use of randomly shifted uniform vectors. By contrast, the dimensionality
problem is irrelevant in pure Monte Carlo methods, which also benefit from a credible theory
for the convergence of the calibration process, as well as of stronger statistical foundations (see
for instance Rubinstein and Shapiro (1993), Shapiro (2000, 2003) for application to stochastic
programming), in particular concerning statistical inference on the optimal value. This led us
to reinvestigate pure Monte Carlo methods for mixed logit estimation, and to propose a new
algorithm for stochastic programming using Monte Carlo methods, based on the trust-region
technique, that allows the use of small subsets of an initially generated set of random draws,
when approximating the objective far from the solution. This technique results in an algorithm
that is numerically competitive with existing tools for mixed logit models, while giving more
information to the practitioner.
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2 The mixed logit problem

Let I be the population size and A(i) the set of available alternatives for individual i, i =
1, . . . , I. For each individual i, each alternative Aj , j = 1, . . . , |A(i)|, has an associated utility
which is assumed to have the form

Uij = Vij + εij , (1)

where Vij = Vij(βj , xij) is a function of a vector of model parameters βj and of xij, the observed
attributes of alternative Aj , while εij is a random term reflecting the unobserved part of the
utility. Without loss of generality, βj may be assumed constant across alternatives (i.e. βj = β

for all j). The theory assumes that individual i selects the alternative that maximizes his/her
utility. If the random terms εij are independently Gumbel distributed with mean 0 and scale
factor 1.0, the probability that the individual i chooses alternative j can be expressed with
the logit formula

Lij(β) =
eVij(β)

∑|A(i)|
l=1 eVil(β)

, (2)

where we have simplified our notation by dropping the explicit mention of the dependence of
Lij and Vij on xij . Formula (2) characterizes the classical multinomial logit model.

Mixed logit models relax the assumption that the parameters β are the same for all individuals,
by assuming instead that individual parameters vectors β(i), i = 1, . . . , I, are realizations of
a random vector β, that is itself derived from a random vector γ and a parameters vector
θ, which we express β = β(γ, θ). For example, if β is a K-dimensional normally distributed
random vector, we may choose γ = (γ1,γ2, . . . ,γK), with γk ∼ N(0, 1)1, and let θ specify the
means and standard deviations of the components of β. The probability choice is then

Pij(θ) = EP [Lij (γ, θ)] =

∫

Lij(γ, θ)P (dγ) =

∫

Lij(γ, θ)f(γ)dγ, (3)

where P is the probability measure associated with γ and f(·) is its distribution function.

The vector of parameters θ is then estimated by maximizing the log-likelihood function:

max
θ

LL(θ) = max
θ

1

I

I
∑

i=1

lnPiji
(θ), (4)

where ji is the alternative choice made by the individual i. In order to face to integrals
evaluation, the value of Piji

(θ) is replaced by a Monte Carlo estimate obtained by sampling
over γ, and given by

SPR
iji
(θ) =

1

R

R
∑

ri=1

Liji
(γri

, θ),

where R is the number of random draws γri
, taken from the distribution function of γ. As a

result, θ is now computed as the solution of the simulated log-likelihood problem

max
θ

SLLR(θ) = max
θ

1

I

I
∑

i=1

lnSPR
iji
(θ). (5)

1N(µ, σ) stands for the normal distribution with mean µ and standard deviation σ.
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We will denote by θ∗ a solution of the true problem (4) and by θ∗R a solution of this last
approximate problem, that we call the Sample Average Approximation, or SAA, by analogy
to stochastic programming. This analogy can also be used to prove almost sure convergence of
the SAA estimators towards true mixed logit likelihood estimators (Bastin et al., Submitted),
as the sampling size R tends to infinity, for a fixed population size. Moreover, from the delta
method, SLLR(θ) can be shown to be an asymptotically unbiased estimator of LL(θ), and the
asymptotic value of the confidence interval radius is given by

εδ = αδ
1

I

√

√

√

√

I
∑

i=1

σ2
iji
(θ)

R (Piji
(θ))2

, (6)

where αδ is the quantile of a N(0, 1), associated with some level of signification δ (for instance
α0.9 ≈ 1.64). Finally, the simulation bias for finite R can be approximated by the quantity

E[SLLR(θ)]− LL(θ) = −
Iε2δ
2α2

δ

.

Details of these derivations can be again found in Bastin et al. (Submitted).

3 A new algorithm for solving the SAA problem

Statistical inference can be used to reduce the cost associated to the solution of the SAA
problem (5), by limiting the number of draws needed in the early iterations, away from the
solution. The main idea is to generate a sample set prior the optimization process, with Rmax

i.i.d. random draws per individual. At iteration k, only a (possibly small) subset of this
sample set will be used, by selecting Rk of the Rmax random draws for each individual (for
simplicity, the first Rk). This idea is exploited in a trust-region algorithm (see Conn et al.
(2000)). The main idea of a trust-region algorithm is, at a current iterate θk, to calculate a
trial point θk + sk by maximizing a model mk of the objective function inside a trust region
Bk= {θ ∈ R

m|‖θ − θk‖ ≤ ∆k}, where ∆k is called the trust-region radius. The predicted and
actual increases in objective function values are then compared, leading to different algorithmic
decisions. In particular, if the model approximates the SAA objective function well and gives
a sufficient increase compared to its accuracy, we surmise that we could work with a less
precise approximation and therefore reduce the sample size. On the other hand, if the model
adequation or predicted increase is poor compared to the precision of the objective function,
we put the sample size to a higher value. More formally, we have the following algorithm,
whose details and convergence proof can be found in Bastin (2004).

Algorithm 1 (A trust-region algorithm with dynamic accuracy).

Step 0. Initialization. An initial point θ0 and trust-region radius ∆0 are given. Set a mini-
mum number of draws Rmin = R0

min and a sample size R0 satisfying ‖∇θSLLR0(θ0)‖ 6= 0
if εR0

δ (θk+1) 6= 0, except if R0 = Rmax. Compute SLLR0(θ0) and set k = 0.

Step 1. Stopping test. Due to the presence of statistical error, classical stopping tests can
lead to final iterations that produce insignificant objective increases compared to the ap-
proximation accuracy, so we stop the iterative process if

‖∇θk
SLLRk(θk)‖ ≤ max(0.2εRk

0.9(θk), 10
−6),
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and either the maximum sample size Rmax is used or, in order to consider the multino-
mial logit case, the estimated log-likelihood accuracy is sufficiently small. We also stop
the algorithm if the norm of the computed step falls under a user-defined significativity
threshold.

Otherwise go to Step 2.

Step 2. Model definition. Define a quadratic model mRk

k of SLLRk(θ) in Bk:

mR
k (θk + s) = SLLR(θk) + 〈∇θSLLR(θk), s〉+

1

2
〈s,Hks〉,

where Hk is a symmetric approximation to ∇
2
θθSLLR(θk). Compute a new adequate

sample size R+ (see Algorithm 2 below). Set R− = Rk.

Step 3. Step calculation. Compute a step sk using the Steihaug-Toint method. Set ∆m
Rk

k =

m
Rk

k (θk + sk)−m
Rk

k (θk).

Step 4. Comparison of increases. Compute SLLR+

(θk + sk) and define

ρk =
SLLR+

(θk + sk)− SLLRk(θk)

∆m
Rk

k

. (7)

Step 5. Sample size update. If ρk < 0.01 and Rk 6= R+, modify R− and the candidate
sample size R+ to take into account the approximation error variations. We can indeed
observe a decrease in the objective value due to differences in SAA variance and due to
the increase of the bias (in absolute value), when the number of draws goes down, while
the candidate iterate is a good one. Recompute ρk.

Step 6. Acceptance of the trial point. If ρk < 0.01, define θk+1 = θk, Rk+1 = R−. Oth-
erwise define θk+1 = θk + sk and set Rk+1 = R+.

In order to ensure convergence to a solution of the original SAA problem, increase the
sample size Rk+1 if we encounter a first-order critical point associated to a number draws

less than Rmax, with an non-null approximation error ε
Rk+1

δ (θk+1). Increase also the

minimum sample size Rk+1
min if Rk 6= Rk+1 and no sufficient increase has been observed

since the last evaluation of SLLRk+1.

Step 7. Trust-region radius update. Increase the trust-region radius if ρk is sufficiently
large, otherwise reduce it. Increment k by 1 and go to Step 1.

Prior to the optimization, the user chooses the maximum sample size Rmax, and the minimum
sample size R0

min is defined to allow estimation of the accuracy (we used R0
min = 36). The

choice of R+ in Step 3 of the previous algorithm is described below.

Algorithm 2 (Candidate sample size selection).
Define a constant ν1 such that ν1 ∈ (0, 1). Use (6) to estimate the size needed to obtain a
precision equal to the model increase, that is

Rs = max











Rk
min,











α2
δ

(I∆m
Rk

k )2

I
∑

i=1

(

σ
Rk

iji
(θ)

)2

(

P
Rk

iji
(θ)

)2





















.
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Compute the ratio between the model improvement and the estimated accuracy,

τk1 =
∆m

Rk

k

ε
Rk

δ (θk)
,

and the ratio between the current sample size and the suggested one for the next iteration:

τk2 =
Rk

min{Rmax, Rs}
.

Then define

R′ =























min {d0.5Rmaxe, dR
se} if τk1 ≥ 1,

min
{

d0.5Rmaxe, dτ
k
1 R

se
}

if τk1 < 1 and τk1 ≥ τk2 ,

d0.5Rmaxe if ν1 ≤ τk1 < 1 and τk1 < τk2 ,

Rmax if τk1 < ν1 and τk1 < τk2 .

Set R+ = max{R′, Rk
min}.

If τk1 ≥ 1, the model increase is greater or equal to the estimated accuracy, so we can reduce the
sample size to the minimum between Rs and d0.5Rmaxe. If τ

k
1 < 1 the improvement is smaller

than the precision. However, a sufficient improvement during several consecutive iterations
may lead to a significant improvement compared to the log-likelihood accuracy, while keeping
the computational costs lower than if Rmax draws were used. If τ k

1 ≥ τk2 , we capitalize on the
fact that the ratio between the current sample size and the potential next one is lower than
the ratio between the model increase and the estimated error, while if τ k

1 < τk2 , it may be
cheaper to continue to work with a smaller sample size, defined again as d0.5Rmaxe, as long
as τk1 is superior to some threshold ν1 > 0 (set to 0.2 in our tests). Below to this threshold,
we consider that the increase is too small compared to the log-likelihood accuracy, and we
possibly increase the sample size.

We briefly illustrate the numerical behaviour of the proposed method in Figure 1, which shows
the number of draws used per individual at each iteration (on the left) and its evolution with
the log-likelihood value (on the right). These graphs correspond to the calibration of a model
based on the Mobidrive data set (Axhausen et al., 2002)
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Figure 1: Variation of sample size
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4 Conclusion

In this paper, we have introduced a new trust-region algorithm for SAA problems occurring in
mixed logit models estimation. This algorithm allows to vary the number of used draws from
iteration to iteration, and can be shown to be convergent while numerically efficient (Bastin,
2004). Moreover, the use of statistical inference allows to give information about the quality
of the approximation of the optimal value, an interesting indication when we have to decide
of the number of draws to use. Extensions to more complicated models, as well as other
approximations techniques, are currently under investigation.
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