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C.P. 6128, Succursale Centre-Ville
Montreal, QC, H3C 3J7, Canada
marcotte@iro.umontreal.ca

1 Introduction

The optimal setting of prices, taxes or subsidies on goods and services can be naturally modeled
as a bilevel program. Indeed, bilevel programming is an adequate framework for modeling
optimization situations where a subset of decision variables is not controlled by the main
optimizer (the leader), but rather by a second agent (the follower) who optimizes its own
objective function with respect to this subset of variables.

In this presentation we address the problem of setting profit-maximizing tolls on a congested
transportation network involving several user classes. At the upper level, the firm (leader)
sets tolls on a subset of arcs and strives to maximize its revenue. At the lower level, each
user minimizes its generalized travel cost, expressed as a linear combination of travel time
and out-of-pocket travel cost. We assume the existence of a probability density function that
describes the repartition of the value of time (VOT) parameter throughout the population.
This yields a bilevel optimization problem involving a bilinear objective at the upper level and
a convex objective at the lower level. Since, in this formulation, lower level variables are flow
densities, it follows that the lower level problem is infinite-dimensional.

We devise a two-phase algorithm to solve this nonconvex problem. The first phase aims
at finding a good initial solution by solving for its global optimum a discretized version of
the model. The second phase implements a gradient method, starting from the initial point
obtained in the initial phase.
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2 The Bilevel Model

We consider a multicommodity network where each commodity k ∈ K is associated with an
origin-destination pair of a transportation network G having node set N and arc set A. The
set A is partitioned into the subset A1 of toll arcs and the subset A2 of toll-free arcs. For
each O-D pair k, let dk be the demand associated with the O-D pair k and Pk the set of paths
connecting its origin to its destination. We denote by P the set of paths connecting any given
O-D pair in the network G.

We associate with each arc a ∈ A a generalized travel time composed of a travel delay and
a travel cost. Let α be a parameter representing the inverse of value of time that converts
one money unit into one time unit. In our multi-class setting, we assume that each traveler
has its own value α characterized by a continuous density function h. We assume that h(α) is
positive over the open interval (0, αmax), null at its endpoints and integrable over the closed
interval [0, αmax]

1.

We denote by vp(α) the flow density on path p ∈ P . The set of feasible path flow vectors
v(α) = {vp(α)}p∈P is given by

Y (α) =
{

v(α) ≥ 0
∣

∣

∑

p∈Pk

vp(α) = dkh(α), ∀k ∈ K
}

. (1)

The total path flow vector v is then
v = {vp}p∈P

with

vp =

∫ αmax

0
vp(α)dα.

The set of feasible total path flow vectors is the compact, finite-dimensional polyhedron (see [3])

Y =
{

v ≥ 0
∣

∣

∑

p∈Pk

vp = dk, ∀k ∈ K
}

. (2)

The total flow on arc a, denoted xa, is the sum of path flows going through arc a.

For each arc a, da(xa) represents the delay on arc a, and ca the fixed part of the travel cost.
Let us define A(p) as the set of arcs that compose path p. The travel delay and the fixed cost
on path p are then expressed as

Dp(v) =
∑

a∈A(p)

da(xa) , Cp =
∑

a∈A(p)

ca . (3)

If ta denotes the toll vector on an arc a (with ta ≡ 0,∀a ∈ A2), the generalized cost πp on path
p is a linear function of travel delay and travel time:

πp(α, v, t) = Dp(v) + α(Cp +
∑

a∈A1(p)

ta) , (4)

where A1(p) is defined as A(p) ∩ A1.

1We could have also considered distinct density functions h
k for each commodity k.
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For fixed t, a flow density vector is an equilibrium (almost everywhere) if and only if it satisfies
the infinite-dimensional variational inequality

VI : v ∈ Y =
{

v ∈
{

`2(0, αmax)
}|P |

: v(α) ∈ Y (α), ∀α ∈ [0, αmax]
}

〈D(v) + αC, v − y〉 ≤ 0, ∀y ∈ Y (5)

where C = {Cp +
∑

a∈A1(p) ta}p∈P and the operator 〈·, ·〉 denotes the scalar product of vectors

function in
{

`2(0, αmax)
}|P |

, i.e.,

〈Φ,Ψ〉 =

∫ αmax

0
〈Φ(α),Ψ(α)〉 dα.

In the case where D = (Dp)p∈P is the gradient of some function d, one can show that v is an
equilibrium solution if and only if it satisfies the first-order optimality conditions associated
with the infinite-dimensional mathematical program

min
v∈Y

d(v) +

∫ αmax

0
α 〈C, v(α)〉 dα.

The price setting model is then formulated as the following bilevel program:

BP: max
t, x, v(α)

∑

a∈A1

taxa (6)

xa =
∑

p|a∈A(p)

∫ αmax

0
vp(α)dα, ∀a ∈ A (7)

min
x, v(α)

d(v) +

∫ αmax

0
α 〈C, v(α)〉 dα (8)

v(α) ∈ Y (α), ∀α ∈ [0, αmax] . (9)

3 Theoretical properties of the lower level program

In this section, we focus our attention on the lower level program (8-9). This involves some
notation and a key assumption. In the sequel we set, for the sake of clarity,

Tp = Cp +
∑

a∈A1(p)

ta , (10)

and πp(α) = πp(α, v, t). Since v and t are fixed, this should cause no confusion. Let {Yi, i =
1, ..., N} denote the set of extreme points of the polyhedron Y and define

Di(v) = 〈D(v), Yi〉 and Ci = 〈C, Yi〉 , i = 1, ..., N.

We introduce an important assumption that can always be enforced through a suitable per-
turbation of the arc cost functions.

Nondegeneracy assumption: Ci 6= Cj for all distinct extreme points Yi and Yj of Y .
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Theorem 1 [3] If the delay function D is strictly monotone on the compact polyhedron
Y and the nondegeneracy assumption holds, then the equilibrium solution is unique (almost
everywhere).

Theorem 2 [1] If the delay function D is strictly monotone on the compact polyhedron Y
and the nondegeneracy assumption holds, then the function v(t) is continuous in t.

For fixed t, the infinite-dimensional variational inequality (VI) can be solved by a linearization
algorithm (see Marcotte and Zhu [3]). At each major iteration of this algorithm, one solves,
for fixed v, the parametric linear program

LP(α) : miny(α)∈Y (α) 〈D(v) + αC, y(α)〉 , (11)

whose solution is unique (almost everywhere) and yields a descent direction for the gap function
(see [3]), under the nondegeneracy assumption. Now, in order to construct an algorithm for
the bilevel program, we need to perform a sensitivity analysis of the flow patterns with respect
to the toll vector t. This is achieved by partitioning the set of paths according to a domination
criterion.

Definition 1 We say that a path p′ ∈ P is dominated if

πp′(α) > min
p∈P

{πp(α)}, ∀α ∈ [0, αmax] . (12)

Otherwise, we say that p′ is undominated.

Definition 2 We say that a path p′ ∈ P is weakly undominated if there exists only one value
α ∈ [0, αmax] such that

πp′(α) = min
p∈P

{πp(α)} . (13)

Definition 3 We say that a path p′ ∈ P is strongly undominated if there exists a nonempty
open interval (α1, α2) ⊆ [0, αmax] such that the equality (13) holds for all α ∈ (α1, α2).

The three domination situations are illustrated in Figure 1, where each straight line represents
the perceived cost associated with a given path. In this example, path p3 is weakly undom-
inated since its perceived cost is minimal for a single value α1 of the VOT parameter, while
paths p2, p4 and p5 are strongly undominated. Path p1 is dominated.

The interval [0, αmax] can be partitioned into
⋃

j=0,...,M

[

αij , αij+1

]

with 0 = αi0 < αi1 < ... <

αiM < αiM+1
such that Yij is strongly undominated on

[

αij−1
, αij

]

with

αij =
Dij+1

(v) − Dij (v)

Cij − Cij+1

. (14)

The values αij are called the critical points associated with the lower level program (8-9).
Geometrically, each critical point corresponds to the intersection point of two lines which
represent the perceived costs associated with two strongly undominated paths, as illustrated
in Figure 1. It can be shown that the solution of LP(α) is given by:

y(x, α) = Yikh(α) for α ∈
[

αik−1
, αik

]

.

Under the nondegeneracy assumption, this solution is unique, except at the critical points.
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Tp3

Tp4

Tp1

Tp5

r

r

α

Dp(v) + αTp

α1 α2 αmax

p2 p4 (strongly undominated)

p5

p3 (weakly undominated)
p1 (dominated)

Figure 1: Dominated and undominated paths

4 The upper level program

Consider the upper level program (6-7). The following lemma states the invariance of the set
of strongly undominated paths set in a neighborhood of a given toll vector t.

Lemma 1 Let t and t′ be two toll vectors. Let us denote by (SU ,WU ,D) and (SU ′,WU ′,D′)
the sets of strongly undominated paths, weakly undominated paths and dominated paths induced
by t and t′ respectively. Then, there exists δ > 0 such that

‖t − t′‖ < δ ⇒ SU ⊆ SU ′ ,D ⊆ D′ . (15)

Let us introduce explicitly origin-destination indices. For each O-D pair k, we associate with
the optimal paths pk

1, ..., p
k
Mk

the critical points 0 = αk
0 , α

k
1 , ...αk

Mk
, αk

Mk+1 = αmax. Under
the assumptions that the set WU is empty and the VOT density h is continuous, the profit
function R is differentiable at t and its partial derivative at t with respect to ta, a ∈ A1 is given
by

∂R(t)

∂ta
= xa(t) +

∑

a∈A1

ta
∂xa(t)

∂ta
, (16)
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where

∂αk
i

∂ta
=

1

Ck
i − Ck

i+1

·
∂
(

Dk
i+1 − Dk

i

)

∂ta
−

Dk
i+1 − Dk

i
(

Ck
i − Ck

i+1

)2 ·
∂
(

Ck
i − Ck

i+1

)

∂ta
(17)

∂Ck
i

∂ta
= 1l

{

a ∈ A(pk
i )
}

(18)

∂Dk
i (x)

∂ta
=

∑

a∈A(pk
i )

d′a(xa)
∂xa

∂ta
(19)

∂xa

∂ta
=
∑

k∈K

Mk
∑

i=1

1l
{

a ∈ A(pk
i )
}

(

h(αk
i )

∂αk
i

∂ta
− h(αk

i−1)
∂αk

i−1

∂ta

)

. (20)

5 A two-phase algorithm

In this section, we briefly outline a two-phase algorithm for solving the price-setting problem.
In the first phase, we solve a discrete approximation of the model, using an exact branch-and-
cut algorithm. This is achieved by extending the mixed-integer formulation of Labbé, Marcotte
and Savard ([2]) to a formulation where the VOT density function is discretized (coarsely) and
congestion functions are approximated by step functions. The resulting model (see [1]) is a
large 0-1 MIP with (|K̃| × m) + (m × w) binary variables, where |K̃| is the new number of
commodities (each commodity being duplicated according to the number of discrete classes),
m is the number of toll arcs and w the number of steps in the approximated delay function. In
the second phase of the algorithm, a local ascent algorithm, based on the gradient information
derived in Section 4, is initiated at the solution obtained in the first phase. Whenever a
linesearch fails to move away from the current solution2, a small step (‘serious step’) is taken
in the gradient direction. A pseudo-code description of the resulting algorithm is given below.

ALGORITHM Toller

Phase 1 Step 0: find an initial point t0 and set k = 0;

Phase 2 Step 1: compute gk = ∇R(tk); if ‖gk‖ ≤ ε then stop;
Step 2: is the linesearch successful at tk ?

Yes: λk ∈ arg min
λ≥0

R(tk + λgk);

No: λk = 1/(k + 1);
Step 3: set tk+1 = tk + λkgk, replace k by k + 1 and return to step 1.

2This happens when the function is not differentiable at the current point, or is only differentiable in a very

small neighborhood of the current point.
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6 Numerical experiments

The performance of the algorithm has been thoroughly tested. In this abstract, we present
results corresponding to a set of 10 randomly generated problems. Exhaustive results and
sensitivity analysis will be presented at the conference and can be found in [1]. The networks
considered contain 200 arcs (20 controlled by the leader), 30 nodes and 10 O-D pairs. By
bilevel programming standards, these are very large instances.

It is clear that both the value and the computing time of the Phase 1 solution increase with
the quality of the approximation, while the computing time is adversely affected. In order to
assess the trade-off between ‘value’ and ‘CPU’, we ran four scenarios. In scenarios A and B,
Phase 1 is not implemented and Phase 2 is initiated with tolls on all toll arcs set to either 0 or
−10. Scenarios C and D implement Phase 2 in increasing coarseness of the approximations.
Table 1 contains statistics pertaining to the four scenarios. The columns refer to the number
of arcs used in the final solution, the number of toll arcs used, the improvement over the base
scenario A, and the CPU time. For each scenario, the first line provides the mean (over 10
test cases) and the second line the standard deviation. As can be expected, the quality of the
discretization in Phase 1 improve the quality of the solution. Computations were performed
on a PC powered by a Pentium 1.2 Ghz processor.

scenario #arcs #tolls improv. CPU
A ave 43.70 4.10 0 10.77

std 5.95 1.91 0 12.73
B ave 39.50 4.00 −3.60 2.12

std 4.22 1.89 13.25 2.40
C ave 44.60 4.00 3.30 9.68
2 classes, 4 steps std 6.19 1.94 12.24 13.17
D ave 44.90 3.80 4.60 8.99
4 classes, 4 steps std 5.90 1.69 12.49 8.60

Table 1: Numerical results
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