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1 Introduction

We consider the Split Delivery Vehicle Routing Problem (SDVRP) where a fleet of homogeneous
vehicles has to serve a set of customers. Each customer can be visited more than once, contrary
to what is usually assumed in the classical Vehicle Routing Problem (VRP) and the demand of
each customer can be greater than the capacity of the vehicles. No constraint on the number
of available vehicles is considered. There is a single depot for the vehicles and each vehicle
has to start and end its tour at the depot. The objective is to find a set of vehicle routes that
serve all the customers such that the sum of the quantities delivered in each tour does not
exceed the capacity of the vehicles and the total distance travelled is minimized.

The SDVRP is a variant of the Capacitated Vehicle Routing Problem (CVRP) which is well
known in the literature (for a survey of vehicle routing problems, see [15]). In [11] the authors
have described a tabu search algorithm for the capacitated vehicle routing problem showing
that this heuristic works well on this problem.

The SDVRP has been introduced in the literature only a few years ago. In [7] and [8] Dror and
Trudeau have analyzed the savings generated by allowing split deliveries in a vehicle routing
problem and they have presented a heuristic algorithm for the problem. They have shown
that when the distances satisfy the triangle inequality there exists an optimal solution for the
SDVRP where no pair of tours has two or more vertices in common. Valid inequalities for the
SDVRP are described in [6] while real applications of the problem are studied in [13] and [14].
In [4] a lower bound is proposed for the SDVRP where the demand of each customer is lower
than the capacity of the vehicles and the quantity delivered by the vehicles when visiting a
customer is an integer number. In [9] the authors present a mathematical formulation and a
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heuristic algorithm for the SDVRP with grid network distances and time windows constraints.
In [1] and [2] the authors have analyzed the k-SDVRP where each vehicle has a capacity
equal to a given integer k, and where the demands of the customers as well as the quantity
delivered by a vehicle when visiting a customer are integer numbers. They have proved that
the problem is NP-hard when k ≥ 3 and they have shown that, under specific conditions on the
distances, the problem is reducible in polynomial time to a new problem where each customer
has a demand that is lower than the capacity of the vehicles, with a possible reduction on the
number of customers.

A direct trip in a k-SDVRP is a tour where a vehicle starts from the depot, goes directly to
a customer where it delivers k units, and then turns back directly to the depot. Given an
instance I of the k-SDVRP, one can build a reduced instance, denoted IR, by modifying the

demand di of each customer to di − k
⌊

di

k

⌋

. A solution sR for IR can then be transformed into

a solution s for I by adding
⌊

di

k

⌋

direct trips for each customer i. Now, given an instance I

of the k-SDVRP, consider the algorithm that first determines an optimal solution s∗
R

for the
reduced instance IR, and then builds the associated solution s∗ for I. It is proved in [2] that
this algorithm gives a worst case error of 3

2
when the distances satisfy the triangle inequality.

In the next section, we describe a tabu search algorithm for the k-SDVRP. Some computational
results are given in Section 3.

2 A tabu search algorithm for the k-SDVRP

It is not difficult to build instances for which Dror and Trudeau’s algorithm [7]. cannot find the
optimal solution. In this section we present a tabu search algorithm for the k-SDVRP, called
SPLITABU, that avoids such a situation (i.e., all optimal solutions can be reached by our tabu
search). SPLITABU is a very simple algorithm, easy to implement, where there are only two
parameters to be set: the length of the tabu list and the maximum number of iterations the
algorithm can run without improvement of the best solution found. The algorithm is composed
of the three following phases.

• Phase 1: construction of an initial feasible solution.

• Phase 2: tabu search phase.

• Phase 3: final improvement of the solution found by the tabu search phase.

2.1 Phase 1 : construction of an initial feasible solution

For constructing an initial feasible solution, we first create a reduced instance by creating as
many direct trips as possible (see Section 1). We then solve a traveling salesman problem on
the reduced instance and we cut this giant tour into pieces so that the capacity constraints are
satisfied. For building a giant TSP tour, we use the GENIUS algorithm proposed by Gendreau,
Hertz and Laporte [10]. GENIUS is composed of two procedures: the first one, GENI, is a
generalized insertion procedure and the second one, US, is a postoptimization routine. It is
shown in [10] that this algorithm is a very efficient solution method for the traveling salesman
problem.
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2.2 Phase 2 : tabu search phase

The tabu search phase is a standard tabu search algorithm that stops when nmax iterations
have been performed without improvement of the best solution encountered so far. According
to preliminary experiments we have fixed nmax equal to 400n, where n is the number of
customers.

A move from a solution s to a neighbour solution s′ is performed by including a customer i

into a route r and by removing i from a set of routes visiting i. The insertion of a customer i

in a route r is made with the classical cheapest insertion method. When a customer i is added
to a route r, we consider as tabu for θ iterations the removal of i from r, and we will say that
route r is tabu for i. Also, when a customer i is removed from a route u, then it is tabu for θ

iterations to reinsert i into u, and we will also say that u is tabu for i. We have observed that
values of θ that depend on the number n of customers and on the number g of routes in the
current solution s produce better solutions. According to preliminary experiments, we have
decided to set θ equal a random integer number in the interval [

√
10,

√
10 + p] where p = n+g

if n + g < 100 and p = 3

2
(n + g) if n + g ≥ 100, since this interval generates values of θ which

are high enough to prevent cycling and not to high to prevent the algorithm from obtaining a
good solutions.

The tabu restrictions defined above may be too strong and forbid a good neighbour solution.
For this reason, we also consider the possibility of removing a customer i from routes that are
tabu for i and to insert i into a route r which is tabu for i. However, such a neighbour is only
accepted if it leads to a better solution than the best one encountered so far.

When all routes visiting a customer i are tabu, then we also consider the possibility of removing
part of the demand of i from a route u, and inserting i into a route r. This cannot lead to a
solution of better value than s and this is the reason why we do not allow such a move if r is
tabu for i.

2.3 Phase 3 : final improvement

Dror and Trudeau have shown that, if the distances satisfy the triangle inequality, then there
always exists an optimal solution to the SDVRP which does not contain t -split cycles with
t ≥ 2, where a t -split cycle is a set of routes r1, ..., rt such that rw contains customers iw and
iw+1, w = 1, ..., t−1, and rt contains customers i1 and it. A t -split cycle can easily be removed
from a solution as follows. Let qw denote the quantity delivered to iw on rw, and let w∗ be an
index such that qw∗ ≤ qw w = 1, ..., t: one can transfer qw∗ units of demand of each customer
iw, w = 1, ..., t − 1, from rw to rw+1 as well as the same quantity for customer it from rt to
r1. Customer iw∗ will thus be removed from route rw∗ . If the distances satisfy the triangle
inequality, then this new solution is possibly better than the one with the t -split cycle.

The final improvement phase performs such kind of improvements. It also tries to reduce the
length of each route by applying the GENIUS algorithm.

Le Gosier, Guadeloupe, June 13-18, 2004



4 TRISTAN V: The Fifth Triennial Symposium on Transportation Analysis

3 Computational results

SPLITABU was implemented in C++ on a PC Pentium 4, 256 MB RAM. We have first
generated problems of small size as follows. We have considered the n first customers of the
benchmark VRP problems described in [11], with n = 6, 7, . . . , 15. All these problems have
a fixed vehicle capacity which was reduced to a smaller value so that at least three vehicles
are needed in a VRP solution. These small problems were solved using CPLEX 6.6. While
problems with up to 10 customers could be solved in a few seconds, larger problems with
n = 11, . . . , 15 required between one hour and four days of computation. For comparison,
SPLITABU has produced the same optimal solutions for all these problems in less than one
second.

Larger problems, with more than 15 customers can hardly be solved to optimality. In order
to evaluate the performance of SPLITABU on such larger instances we compare the results
produced by SPITABU with those obtained using Dror and Trudeau’s algorithm (DT for
short). Algorithm DT was implemented in C++ on the same PC. We have considered problems
1-5, 11 and 12 from [11]. These problems have between 50 and 199 customers. As proposed
by Dror and Trudeau [7], the demands of the customers have been modified as follows. Let α

and γ be two parameters chosen in the interval [0, 1], with α ≤ γ. The demand di of customer
i is chosen randomly in the interval [αk, γk]. As in [7], we have considered the following
combinations (α, γ) of parameters : (0.01, 0.1), (0.1, 0.3), (0.1, 0.5), (0.1, 0.9), (0.3, 0.7) and
(0.7, 0.9). We have also considered the case where the original demands are not changed. This
gives a total of 49 instances (since there are 7 instances with different demands for each of the
7 VRP problems taken from [11]).

The algorithm proposed by Dror and Trudeau [7] uses the two following improvement proce-
dures : procedure NODE INTERCHANGES [5] that performs one-node moves and two-nodes
swaps between routes, and the classical 2-OPT procedure [12]. Preliminary experiments with
SPLITABU have shown that some solutions can easily be improved by applying these two
procedures each time the best solution s∗ encountered so far is improved. This variant of
SPLITABU is called SPLITABU-DT. Finally, since algorithm DT is much faster than our
tabu search, we have considered a variant of SPLITABU-DT, called FAST-SPLITABU where
Phase 2 is run for at most one minute.

Each variant of SPLITABU was run 5 times on each instance (two executions on a same
instance may differ due to the randomness of the length of the tabu list). Detailed tables of
results appear in [3]. We summarize here below our main observations. We have first noticed
that DT is very fast since it requires less than one second for 35 of the 49 instances. In
average, SPLITABU and SPLITABU-DT require less than 10 minutes for 35 and 31 instances,
respectively. They both require more than one hour in only two cases. CPU times increase
not only with the number of customers but also with their demands. Indeed, an instance with
(α, γ)=(0.01, 0.1) is typically solved much faster than the same instance with (α, γ)=(0.7, 0.9).
The reason is that more vehicles are needed when the demands are becoming larger, and this
induces an increase in the number of neighbour solutions to be considered at each step of the
tabu search.

Our next observation is that SPLITABU-DT finds better solutions than DT on all 49 instances.
The improvement even reaches 17.34% on some instances. Algorithms SPLITABU and FAST-
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SPLITABU both outperform DT on 43 instances. The advantage of the three variants of
SPLITABU over algorithm DT is particularly visible on instances with small demands. More
detailed results and comments can be found in [3].

4 Conclusions

SPLITABU is a very simple algorithm for the k-SDVRP, easy to implement, with only two
parameters to be set. Computational experiments confirm that optimal solutions can be ob-
tained in a practically null time for small instances having up to 15 customers. Comparison
with Dror and Trudeau’s algorithm (the only existing heuristic algorithm for the k-SDVRP)
show that the variants of SPLITABU provide almost always better solutions even when com-
putational times are limited to one minute. Another important issue is that one can easily
build instances for which Dror and Trudeau’s algorithm cannot find the optimal solution, while
the neighbourhood defined in SPLITABU overcomes this difficulty.
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