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1 Introduction

A number of traffic simulation models have been developed to date, ranging from detailed
microscopic to mesoscopic models. These models are being used to support a variety of traffic
operations applications, such as the evaluation of infrastructure design, traffic control systems
and ITS deployment strategies. However, the effectiveness of such models hinges on how
field conditions are replicated by the parameters in the simulation model. Calibration of the
simulation model is required in order to achieve the best reproducibility of field conditions.

Model parameters include parameters that capture travel behavior (such as route and depar-
ture time choice) as well as those that affect traffic dynamics. Microscopic simulation models
typically employ acceleration, lane-changing and intersection models to capture traffic dynam-
ics. Mesoscopic models, on the other hand, rely on capacities and speed-density functions
to capture queues and spillback. In addition, origin-destination (OD) flows are an important
input to simulation models. However, because of the spatial extent of the applications, OD
matrices, let alone accurate, dynamic ones, are not readily available. Hence input OD flows
need to be estimated as part of the calibration process.

Calibration of traffic simulation tools is not a trivial task. The source of the difficulty is
that the available field data usually consists of aggregate traffic measurements (such as flows,
speeds and occupancies at sensor locations, queue lengths and point-to-point travel times),
which are the emergent results of the interactions between various behaviors of individual
drivers. Therefore, this type of data does not support independent calibration of the various
models the traffic simulator consists of.
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A number of papers have been published on the subject of traffic simulation model calibration
(see, for example, Ben-Akiva et al 2004, Park and Schneeberger 2003, Hourdakis et al 2003
and Yang et al 2001). However, a majority of the work has focused on the calibration of
individual simulation model components (such as OD demand or driving behavior models),
thus ignoring the complex interactions between them. For example, while the OD estimation
problem has received considerable attention, it has rarely been combined with the calibration
of other models that affect the mapping of OD flows onto the aggregate traffic measurements.
Solution approaches for the calibration problem have largely been based on ad hoc formulations
of the problem, and utilize heuristic algorithms. The objective of this paper is to present a
systematic procedure for joint calibration of model parameters and dynamic OD flows using
aggregate data.

2 Calibration methodology

The general calibration framework (Figure 1) consists of two steps: initially, the individual
models (such as the route choice and driving behavior models and speed-density functions) are
estimated independently using disaggregate data. Route choice model parameters, for example,
can be estimated using detailed survey data. Similarly, driver behavior information such as
vehicle trajectories can be used to calibrate microscopic car following or lane changing models.
Time-dependent sensor speed and density records can be used to identify the parameters in
speed-density functions used by mesoscopic models. The estimated models may also be tested
independently, for example, using holdout samples.

In the second step, the simulation model as a whole is calibrated and validated using aggregate
data. Aggregate calibration ensures that the interactions between the individual models within
the simulator are captured correctly, and allows for the refining of the independently estimated
parameter values for the specific site being studied.

While this two-step approach is desirable, data availability often dictates the feasibility of
the steps outlined above. Most often, only aggregate data collected through loop detectors
is available and therefore only aggregate calibration and validation are possible. Section 3
provides a rigorous mathematical formulation of the aggregate calibration problem.

3 Aggregate calibration formulation

The aggregate calibration step can be formulated as an optimization problem which seeks
to minimize a measure of the deviation between observed measurements and corresponding
predictions from a model:

minimize
XN ,θN

N∑

i=1

[
z1(M

obs
i , M̂i) + z2(xi,x

0
i ) + z3(θi,θ

0
i )

]
(1)

s.t. M̂i = f(xi,θi,TThab
i , Gi) (2)

TThab
i = g[TThab

i−1, T T i−1] (3)
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Figure 1: General Calibration Framework

The objective function in Equation (1) captures the deviations of mean model measurements

M̂i, OD flows xi and model parameters θi for day i, from their observed or a priori estimates
Mobs

i , x0
i and θ

0
i respectively. The minimization is performed across all N days, so that

XN = {x1,x2, . . . ,xN} and ΘN = {θ1,θ2, . . . ,θN}. The mean model measurements (which
could include link counts and speeds as well as point-to-point travel times) are a function of
habitual travel times TThab

i and the network Gi in addition to OD flows and model parameters,
as denoted by Equation (2). Further, each realization of the simulator output (represented by
the subscript w) is modeled as a noisy measurement of the corresponding mean quantity:

Miw = M̂i + εiw

where εiw is a zero-mean error term. The stochasticity of the simulator is represented through
the variance of the error term, which vanishes for deterministic models. The habitual travel
times TThab

i perceived by drivers on day i are modeled, in the general case, through a learning
model (Equation (3)) that updates previous perceptions TThab

i−1 with the latest experiences.
T T i−1 represents the set of all experienced travel times upto and including day (i−1). Network
travel times, which are inputs to the learning model, are often not measured. Mean simulated
travel times T̂ T i−1 can then be used instead of T T i−1 in Equation (3).The network Gi captures
all factors that affect the capacity of the network, such as link closures and incidents.
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While the specification of a learning model to capture day-to-day variations in drivers’ travel
time perceptions is intuitive, it requires data from a sufficiently long sequence of consecutive
days. The recursive nature of the learning model also requires knowledge of the habitual travel
times on the first day of the sequence. An assumption that perceived travel times are constant
during the days for which data was collected is a practical alternative for many applications,
while still allowing the experienced travel times to be different for each day. Further, the
available data can be classified based on factors such as day of the week, weather conditions
and special events, with constant habitual travel times and model parameters in each class.
OD flows, however, can still vary from day to day. The remainder of this paper focuses on
solving for the OD flows XN , model parameters θ and habitual travel times TThab for one
class containing N days of observations.

4 Solution approach

The formulation in Section 3 lends itself to various iterative solution approaches. The eval-
uation of the objective function, however, involves costly simulation runs. Furthermore, the
dimensionality of the calibration parameters, in particularly the OD flows, can be very high
even for networks of modest size. We therefore propose an approach based on the decom-
position of the problem by parameter group (i.e. OD flows XN , and model parameters θ).
This strategy creates two sub-problems: an OD estimation problem for which existing efficient
solution methods may be used, and a parameter calibration problem which typically has a
much lower dimensionality. Algorithm 1 outlines the steps in the general iterative solution
approach.

k = 0, x̂k
i = x0

i ∀i, θ̂k = θ
0

repeat

Calculate T̂T
hab

k (X̂ k
N , θ̂k)

Solve for X̂ k+1

N (θ̂k, T̂T
hab

k )

Solve for θ̂k+1(X̂
k+1

N , T̂T
hab

k )
k = k + 1

until ‖x̂k
i − x̂k−1

i ‖ < εx ∀i and ‖θ̂k − θ̂k−1‖ < εθ for successive iterations.

Algorithm 1: Solution Steps

The starting point for the algorithm is denoted by x0
i and θ

0, representing the best a priori
estimates of OD flows and model parameters available. Each iteration k of the solution process
consists of several steps. At every step a set of parameters are calibrated, while the remaining
parameters are fixed at their previous values. OD estimation is a critical calibration step and
requires the generation of assignment matrices, which itself depends on route choice behavior
and experienced travel times. Habitual travel times are important explanatory variables in
route choice models. Hence habitual travel times are calculated based on the current estimates
of OD flows and simulation model parameters. These travel times along with the current route
choice parameters are used to generate assignment matrices. OD estimation can be performed
using the calculated assignment matrices. The new OD flows are then used to re-calibrate route
choice and traffic dynamics parameters, before moving to the next iteration. The algorithm
terminates when the deviations of parameter estimates from estimates in past iterations fall
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Figure 2: Solution Approach

within pre-defined thresholds (denoted by εx for OD flows, and εθ for model parameters). The
proposed approach is illustrated in Figure 2.

Several variations of the basic solution approach are possible. For example, habitual travel
times may be re-calculated following the updating of each subset of variables (i.e. OD flows,
route choice parameters and traffic dynamics parameters) or only after all variables have been
updated. Moreover, the order in which the three sets of parameters are calibrated may be
modified. Another variation, considering the closer inter-dependency between OD flows and
route choice parameters, is to perform several iterations of these two steps before updating the
traffic dynamics parameters. In this case, the calibration of route choice and traffic dynamics
parameters will be performed in two separate steps, using similar mathematical formulations.

5 Ongoing research: case study

The formulation and solution approach outlined thus far are currently being demonstrated
through a case study using a freeway network in Hampton Roads, Virginia.
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6 Conclusion

A framework for the calibration of traffic simulation models using aggregate data was pre-
sented. The framework takes into account the interactions between the various model parame-
ters and the OD flows by estimating OD flows jointly with the model parameters. An iterative
solution framework is proposed based on the fact that parameter estimates depend on the OD
flows, and vice versa.
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