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1 Introduction

This paper deals with the multiobjective shortest path problem (MSPP), defined over a net-
work where several parameters are associated with each arc and one intends to find a path
between two specific vertices (s and t), which minimizes a function of the arc parameters.
This is an extension of the classical shortest path problem (SPP) where only one parameter
(weight) is considered for each arc and one aims to determine a s-t that minimizes the sum
of the weights associated to the arcs in the path (see [3, 9] for extensive bibliographies on the
SPP).

Vincke, [10], proposed the multiobjective formulation in which several parameters are associ-
ated with each arc, allowing the possibility of incorporating various criteria. The objectives
can be defined as cost, distance, time, reliability, accessibility, capacity, and others. For a
review of the MSPP, the interested reader is referred to Current and Marsh, [2] and Ehrgott
and Gandibleux, [4].

Therefore, one intends to determine a s-t path that minimizes simultaneously all the criteria
under consideration. Usually, there is a conflict among the different criteria and such an ideal
solution does not exist. The resolution of the MSPP turns into finding nondominated (ND)
paths, that is, paths for which there is no other path with better values for all the criteria.

The MSPP is known as being a hard problem to solve and Hansen, [6], proved that it may
exist an exponential number of ND solutions in the worst case.
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2 Algorithms for the MSPP

The large number of applications of the MSPP led to the development of various strategies
to obtain the optimal solutions. The existing approaches can be classified in two classes. The
first one includes algorithms that determine a single ND path. This is the case of a global
optimization problem where a utility function is defined. Interactive procedures, where the
user is guiding the search into the criteria space, are also considered in this group. In the
second class of approaches for the MSPP, the full set of ND paths is required. The well-
known labeling algorithm and the procedures based on ranking paths proposed by Cĺımaco
and Martins, [1], are considered in this group. Mote, [8], suggested the determination of the
full set of ND paths in two stages. At the first one, all the supported ND paths are computed.
They are always ND ones and can be easily determined because they correspond to the optimal
solutions of linear programming relaxation of the MSPP. At the second stage, the remainder
ND paths are found by local search using label techniques.

The simplicity of the labeling algorithm makes it a very efficient technique with a large appli-
cation in this area. Briefly, this algorithm develops a search tree where the root corresponds
to the initial node s. The general step consists of selecting a label for a node i in the search
tree and expanding it by the arcs outgoing from i. Using the Optimality Principle (OP), some
branches can be ignored. In fact, the OP asserts that if p is a ND path, then every subpath
of p will be a ND one. So, if a branch q from s to i in the search tree is dominated by another
branch w already computed (between the same pair of vertices), then the tree will never be
expanded from q. Therefore a dominance test is defined which can be applied either to the
new generated label and/or to the label selected to expand the tree. In this way, the labeling
algorithm can be viewed as an improvement of the exhaustive search procedure incorporating
the dominance test. The labels that are not eliminated by this test are considered as tempo-
rary ND ones. Some of them may be turned into dominated when new labels are added to the
search tree.

There are two well-known forms for the labeling algorithm. They differ in the way one selects
the label from which the search tree is expanded. The first one (label correcting) was proposed
by Vincke [10] and follows a FIFO rule to select the label. In this way, the search tree is
expanded through levels (wide search). However, the labels with respect to node t (that is, the
s-t paths) only appear after developing great part of the search tree. The second one (label
setting) was proposed by Hansen, [6], where one looks for a label with a higher probability
of being ND at the end of the algorithm. In the present work, a lexicographic shortest label
technique is used leading to a kind of deep search procedure for generating the set of ND
paths.

3 The new algorithm

The new algorithm proposed in this work can be seen as a variant of the label setting algorithm
where the lexicographic shortest s-t path is selected and the search tree is then developed from
the nodes involved in the path. Hence, this algorithm computes sequentially deviation shortest
paths, [7], until all optimal solutions are obtained. Consequently, it is a full deep search and
finds ND s-t paths at a very early stage.
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In this algorithm, we use the MPS procedure, [7], to rank lexicographic shortest s-t paths.
This procedure is an improvement of Eppstein’s algorithm, [5]. It initially computes the
lexicographic shortest tree rooted at t (T ?

t ) and the reduced cost c̄i,j of an arc (i, j) with
respect to T ?

t . The main idea of the MPS procedure is the use of a set X of candidates for
the next lexicographic shortest path. Its elements can be written as:

q
p
vi,j

= 〈v0, . . . , vj〉♦〈vi, j〉♦T ?
t (j), i ∈ {0, . . . , r}

where (vi, j) does not belongs to T ?
t , T ?

t (j) is the path of T ?
t from j to t and p = 〈v0, . . . , vr〉 is

one of the lexicographic shortest s-t paths already determined. In this way, the lexicographic
shortest element of X will be the next lexicographic shortest s-t paths of the network.

4 Computational results

Computational results are also presented comparing the performance of the three procedures
mentioned above. They are reported for a large set of instances and concern to CPU time,
space of memory required, percentage of ND s-t paths calculated by iteration and average
work executed (which indicates the average computational effort involved on the calculation
of each ND path), showing that the new algorithm outperforms the previous ones in a very
significant way.

In the computational results, two kind of test problems were solved:

• the bicriteria case: using 10000 nodes networks;

• the general case: considering up to 10 criteria. However, the number of nodes was
reduced to 1000 and the number of arcs to 6000.

The next tables shows some results obtained in bicriteria networks. From them, one may con-
clude that the new algorithm (newAlg) outperforms the label one (labelCor and labelSet)
in terms of the average work. The reverse situation occours for the CPU time. This means
that, in the beginning, newAlg is faster than labelCor and labelSet to find ND paths.
However, it becomes slower than label algorithm each time a new ND paths is computed.

arcs 20000 30000 60000 11000

newAlg 0.01 0.01 0.05 0.14
labelCor 0.00 0.01 0.02 0.07
labelSet 0.01 0.01 0.04 0.12

CPU time in 10000 nodes bicriteria networks

arcs 20000 30000 60000 11000

newAlg 1386.00 2635.30 5725.00 8835.80
labelCor 2949.00 4065.30 6982.50 10058.20
labelSet 2941.90 4062.10 6973.90 10044.50

Number of iterations in 10000 nodes bicriteria networks
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arcs 20000 30000 60000 11000

newAlg 248.58 617.15 2254.18 4861.62
labelCor 1538.32 2878.08 5834.34 9804.88
labelSet 1342.09 2450.63 4725.62 8211.90

Average work in 10000 nodes bicriteria networks

In what concerns the multicriteria case (see the following tables), the conclusion is similar to
the previous one.

criterias 2 3 5 10

newAlg 0.05 0.13 0.93 12.64
labelCor 0.02 0.06 0.56 10.17
labelSet 0.04 0.12 0.85 12.71

CPU time in 1000 nodes and 6000 arcs multicriteria networks

criterias 2 3 5 10

newAlg 5725.00 10179.30 28433.10 99638.40
labelCor 6982.50 13339.70 35296.50 121711.40
labelSet 6973.90 12850.40 35135.70 121708.50

Number of iterations in 1000 nodes and 6000 arcs multicriteria networks

criterias 2 3 5 10

newAlg 248.58 3875.60 11326.47 30998.70
labelCor 1538.32 10940.02 27835.87 102415.80
labelSet 1342.09 8407.68 23052.95 75210.52

Average work in 1000 nodes and 6000 arcs multicriteria networks
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