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Abstract 
In this work we consider the problem of hazmat global route planning, where a set of hazmat 
shipments has to be routed over a transportation network in order to transport a given amount 
of hazardous materials from specific origin points to specific destination points. One of the 
main goal in hazmat global route planning is the minimization of the total risk imposed by 
hazmat transportations on the public and environment. As a matter of fact, risk equity has 
also to be addressed, since several hazmat shipments has to be carried out on the network. 
We provide a bilevel programming formulation for the hazmat global route planning that 
takes into account both total risk minimization and risk equity. 
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1. Introduction 
 

The transportation of hazardous materials (hazmats), though may be classified among the most 
general freight transport issues, is an activity that presents extremely typical characteristics which 
make its planning, management and control a particularly complex task. What differentiates hazmat 
shipments from the transportation of other materials is the risk associated with an accidental release 
of hazardous materials during transportation. To reduce the occurrence of dangerous events it is 
necessary to provide appropriate answers to safety management associated with dangerous goods 
shipments. 

Risk assessment and hazmat shipments planning are two of the main research fields in hazmat 
transportation. Risk is the primary ingredient that distinguishes hazmat transportation problems 
from other transportation problems. In the literature, a lot of work has already been done in risk 
assessment, by modeling risk probability distribution over given areas, for example, taking into 
account the risk related to the carried object and the transport modality (Abkovitz et al. 1984) and 
the environmental conditions (Patel and Horowits, 1994). There are several excellent review articles 
addressing the literature related to modeling of risk for hazmat transportation; however, there is no 
universally definition of risk. In this work we refer to the traditional definition of risk over a link, 
that is the societal risk defined as the product of the population along the link within the 
neighborhood and the probability of an accident (Erkut and Verter, 1998). 
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The main issue of hazmat shipments planning is routing hazmat shipments, that involves a 
selection among the alternative paths between origin-destination pairs. From a carrier’s perspective, 
shipment contracts can be considered independently and a routing decision needs to be made for 
each shipment, which we call the local route planning problem. At the macro level, hazmat routing 
is a “many to many” routing problem with multiple origins and an even greater number of 
destinations.  In the sequel, we refer to this problem as global route planning. 

The local routing problem is to select routes between a given origin-destination pair for a given 
hazmat, transport mode, and vehicle type. Thus, for each shipment order, this problem focuses on a 
single-commodity and a single origin-destination route plan. Since these plans are often made 
without taking into consideration the general context, certain links of the transport network tend to 
be overloaded with hazmat traffic. This could result in a considerable increase of accident 
probabilities on some road links as well as leading to inequity in the spatial distribution of risk.  

Transport costs remain as the carriers’ main focus. In contrast, the government has to consider 
the global problem by taking into account all shipments in its jurisdiction. This leads to a harder 
class of problems that involve multi-commodity and multiple origin-destination routing decisions. 
Moreover, besides the minimization of the total risk imposed on the public and environment, a 
government agency may need to consider promoting equity in the spatial distribution of risk. This 
becomes crucial in the case in which certain population zones are exposed to intolerable levels of 
risk as a result of the carriers’ routing decisions.  

Therefore, in the global route planning for hazmat shipments, the main problem is that of 
finding minimum risk routes, while limiting and equitably spreading the risk in any zone in which 
the transportation network is embedded. As a matter of fact, risk equity has to be taken into account 
also whenever it is necessary to carry out several hazmat shipments from a given origin to a given 
destination. In this situation, the planning effort has to be devoted to distribute risk uniformly 
among all the zones of the geographical crossed region. This concept is well defined in (Keeney, 
1980), where a measure of the collective risk is determined with explicit reference to the equity.  

Hazmat local route planning has attracted the attention of many OR researchers, while the 
global route planning problem has attained relatively little attention in the literature. The results in 
this latter area include the works of Gopalan et al. (1990), Lindner-Dutton et al. (1991) and 
Marianov and ReVelle (1998).  The works of Akgün et al. (2000), Dell’Olmo et al. (2005) and 
Carotenuto et al. (2007) on the problem of finding a number of spatially dissimilar paths between an 
origin and a destination can also be considered in this area. For a complete survey on hazmat 
logistics the reader is referred to Erkut et al. (2007). 

In this paper, we give a more general formulation than those present in the literature for the 
following hazmat shipment global route planning problem: a set of hazmat shipments has to be 
routed over a transportation network in order to transport a given amount of hazardous materials 
from specific origin points to specific destination points with the aim of minimizing the total risk of 
the shipments and spreading the risk equitably over the geographical region in which the 
transportation network is embedded. The main advances presented are: 

- flow based formulation as opposed to path based formulations in the literature; this helps in 
solving the problem without iteratively computing paths and avoiding each route search to 
be biased by the previously found paths; 

- proposal of a bi-level optimization model, with total risk and equity as objective functions. 



The proposed model is experimentally evaluated on an Italian geographical region.  
 
 
2. The Bilevel Optimization Model 
 

In a bileveling mathematical programming (see e.g. Bialas and Karwan, 1984) one is concerned 
with two optimization problems where the feasible region of the first problem, called upper level (or 
leader) problem, is determined by the knowledge of the other optimization problem, called lower 
level (or follower) problem. Problems that naturally can be modelled by means of bilevel 
programming are those for which variables of the first problem are constrained to be the optimal 
solution of the lower level problem. 

In general, bilevel optimization is issued to cope with problems with two decision makers in 
which the optimal decision of one of them (the leader) is constrained by the decision of the second 
decision maker (the follower). The second level decision maker optimizes his/her objective function 
under a feasible region that is defined by the first level decision maker. The latter, with this setting, 
is in charge to define all the possible reactions of the second level decision maker and selects those 
values for the variable controlled by the follower that produce the best outcome for his/her objective 
function. A general formulation of such problem is the following: 
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where x1 is a vector of m1 real valued components representing the variables controlled by the upper 
level program, and x2 is a vector of m2 real valued components controlled by the lower program. S is 
the common feasible region, and { }SxxRxxS m ∈∈= ),(:)( 2121

2 . When both the leader and the 
follower problems are linear then we have a bilevel linear/linear program that can be explicitly 
defined e.g. as follows: 
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In the hazmat literature there is a previous work done with bilevel optimization, that is based on 
the idea of modelling the decision of the government and the carriers, respectively (Kara and 
Verter, 2004). In the paper of Kara and Verter (2004), the authors study the problem of how to 
design a road network available to dangerous goods carriers by an ad-hoc government agency such 
that the road segments selected are those that minimize the total risk. Indeed, on the (sub)-network 
that minimize the total risk each carrier should select a number of paths typically minimizing the 
total cost of such paths, and thus the best should be that such paths overlap with those selected by 
the government, and this is why the problem is a bilevel programming one.  

As for the other papers in the hazmat literature, we note that also the model by Kara and Verter 
(2004) uses paths to determine the routes onto which the dangerous materials should be shipped. 

In this paper, we propose a new model based on flows. In our attempt to design a model based 
on flows, we posed a first question on how capacities on the transportation network should have 
been defined, and, in particular, if capacities have sense in the studied problem. Indeed, in a 
classical flow problem, flow conservation laws and capacity constraints are to be obeyed, and in our 
setting the role played by capacities is not clear since the overall quantity of the commodities to be 
shipped does not undergo to a violation of the arc capacities. This is the main reason for which we 
decided to consider a bilevel program formulation. To be more specific, we assumed the existence 
of two decision makers, one willing to define a feasible flow on the network that produces the 
minimum total risk on the population, and the other that, interpreting the optimal flow of the 
previous (lower level) decision maker as an arc capacity vector,  minimizes the maximum risk on 
the network, i.e., coping with an equity risk distribution objective function. Note that, differently 
from what happens in the paper of Kara and Verter (2004), the two actors belong to the same 
strategic decision area, i.e., in this paper we do not consider the carrier point of view. 

 

Upper level 

Lower level 

min TotalRisk(paths) 
 
Road Network Design 

min MaximumRisk(flows) 
 
Capacity Setting 

min TotalCost(paths) 
 
Path selection on the Network 

min TotalRisk(flows) 
 
Flow assignment on the Capacitated 
Network 

Kara and Verter (2004) Our model 
 

Figure 1: Comparison between Kara and Verter (2004) and the proposed model. 
 

In Figure 1, we report the comparison between our model and that of Kara and Verter (2004). In 
particular, our problem is a network design one, where the goal is not that of determining a 
subgraph of the whole transportation road network, but it is to determine capacities leading to a 
balanced risk over the population as evenly as possible. 

Let the transportation network be represented as a directed graph G = (N, A), with N and A 
being the set of n nodes and the set of m links (arcs) of the network, respectively. Let C be the set of 



hazmat shipments, and, for each hazmat shipment c ∈ C, let sc and tc be respectively the source 
node (origin point) and the sink node (destination point), and let dc be the amount of hazmat to be 
shipped from sc to tc.  

We assume that the risk is computed on each link of the network and is proportional to the flow  
traversing such an arc. Let s(xij

c) be a function that models the risk on arc (i, j) ∈ A due to the flow 
of hazmat shipment c ∈ C on that arc: we assume that this function is linear in flow xij

c assigned to 
arc (i, j) related to commodity (hazmat shipment) c, that is, s(xij

c) = ρij
c xij

c, where ρij
c is the risk per 

flow unit. 
Roughly speaking, we model the hazmat problem imposing that the feasible region S represents 

all the feasible flows in the transportation network where arc capacities are defined by the optimal 
solutions of the upper level program. Note that once capacities are fixed by the leader decision 
maker, the follower’s problem becomes a minimum cost flow problem, where the arc cost models 
the risk of traversing an arc through the linear relation between flows and risks. To be more 
specific, the lower level problem is a multi-commodity network flow problem, where a specific 
hazmat shipment c (commodity c) is associated with a  couple (sc; tc) of source-sink nodes. 

Assume then that the variables of the leader are capacities, i.e., he/she wants the maximum risk 
associated with arc network to be minimized, given a feasible flow that is controlled by the 
followers’ formulation, i.e., the decision maker that solves a minimum cost flow problem, given the 
capacity of the upper level decision maker. It is easy to understand that the lower level formulation 
might give different feasible flows based on the capacities given by the first decision maker and that 
similarly the capacities of the upper program are affected by the flow of the second decision maker. 
Thus, let x1 be the vector of flows, and x2 be the vector of capacities. Given that the objective 
function of the follower is f2(x1, x2) we can write the following program that solves the lower level 
program 
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Let now Ψ(x2) be the set of optimal solutions of the previous problem, then the bilevel program 

can be formulated as a unique problem, that is the problem of the leader decision maker, as follows: 
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Note that, as it will appear clearer next, g2, h2 are the classical capacity constraints and flow 

conservation laws, respectively. 
In the following, we present the bilevel formulation where the upper level formulation looks for 

risk equity, while the lower level formulation looks for total risk minimization. 
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The upper level formulation models the problem of assuring an equitable distribution of the risk 
over the network given a multi-commodity hazmat flow by the lower level decision maker. The 
model minimizes the maximum risk λ allowed on each arc of the network, finding appropriate are 
capacities to the network. Constraints (1) say that the risk induced over the population of each arc 
cannot be greater than λ, while (2) are nonnegative constraints on the arc capacities. 



The lower level formulation models the problem of minimizing the total risk over the network 
induced by a multi-commodity flow, given the capacities imposed by the leader decision maker. 
Being FS(i) and BS(i) respectively the forward and backward stars of each node i ∈ N, constraints 
(3) impose the conservation of flow at nodes for each commodity. Constraints (4) say that the total 
flow on arc (i, j) ∈ A should not exceed the arc capacity value yij. Note that flows are variables of 
the lower level model and capacities of the upper level, thus the minimization of Rtot is assumed 
over the xij

c variables, and λ over the yij variables. 
Therefore, our formulation can be rewritten as  
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Fortuny-Amat and McCarl (1981) proposed a method to solve the linear/linear bilevel 

formulation, by replacing the lower level model with the Kuhn-Tucker optimality conditions into 
the upper level problem, thus obtaining a unique optimization problem. Therefore, in the following, 
we will transform our bilevel program into a new problem with a single objective function, 
assuming that P2 is the primal formulation from which we want to define its optimality conditions, 
i.e., complementary slackness and primal and dual feasibility. To this aim let us define: 
 
γi

c = dual variables associated with primal constraints (3), where i ∈ N, c ∈ C; 
ηij = dual variables associated with primal constraints (4) where (i, j) ∈ A; 
wij = slack variables of the primal constraints (4), where (i, j) ∈ A; 
zij

c = slack variables of the dual constraints, where (i, j) ∈ A, c ∈ C. 
 

Now, we report the new optimization problem P3 with a single objective function, where we 
considered the optimality conditions of the lower level decision maker. 
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It is easy to see that complementary slackness conditions (6) and (7) are quadratic constraints. 

Moreover (see constraints (8)), dual variables associated with primal equality constraints are free in 
sign. 

Constraints (6) and (7) can be linearized by introducing four binary variables, namely 

321 ,, δδδ and 4δ  and a large number M, as reported in the next binary linear program P4. 
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Note that, due to constraints (13) and (14), pairs of constraints (9)-(10) and (11)-(12) are such 

that complementary slackness relations in P3 are obeyed. 
The PL01 program P4 can be solved in practice by considering separately the four binary 

patterns for the δ variables, i.e., (δ1, δ2, δ3, δ4) ∈ {(1, 0, 1, 0); (1, 0, 0, 1); (0, 1, 1, 0); (0,1, 0, 1)}, 



and solving the related linear program at the optimum and then choosing the solution with the 
smallest value of λ. This represents another major difference with the model of Kara and Verter 
(2004) where also variables related to the two decision makers are integers and thus this kind of 
reduction cannot be afforded.  

 
 

3. Experimental results 
 

We study a real-world case study to prove the effectiveness of the proposed model, using  the 
commercial solver CPLEX 8.0.1 (www.ilog.com). We considered the road network of the Lazio 
region (located in the middle of Italy), and, in particular, its main transport roads for an overall size 
of 331 macro-nodes and 879 arcs (see Figure 2). Risks values have been provided by a local agency 
and range from 50 to 250 per ton. of hazmat transported. We considered up to 10 origin-destination 
pairs each associated with 200 tons to be routed.  

Results are reported in Figures 3 and 4. Figure 3 shows the total risk on the network for an 
increasing number of origin-destination pairs (values range from 295788 to 6290000). Figure 4 
depicts the trends of the maximum risk λ for the same shipment range (values ranges from 17160 to 
34320). Figure 5 reports the number of simplex iterations executed by CPLEX to solve the model 
P4 in this setting.  

 
 

 
Figure 2: The transportation network of Lazio. 

 
 

 
 
 



 

 
Figure 3: total risk over the number of shipments. 

 
 

 
Figure 4: maximum risk over the number of shipments. 

 
 
 



 

 
Figure 5: the number of simplex iterations performed by the solver. 

 
 

Moreover, we experimented with a variable amount of hazmat to be routed for each shipment, 
keeping fixed the number of origin-destination pairs to 10. Figures 6 and 7 show the trends of the 
total risk and the maximum risk, respectively, over increasing hazmat tons per shipment ranging to 
20 to 640 tons. Note that in the latter two figures the behaviour of the two objective functions is 
almost linear since the origin-destination pairs are fixed and the quantity of hazmat to be shipped 
increases of the same amount for each of them. 
 

 
4. Conclusions 
 

In this work, we have proposed a bilevel network flow model for hazmat global route planning. 
The proposed model aims to minimize total risk and  risk equity. The performance of the model has 
been evaluated on a real test case over an Italian region. Several refinements may be introduced to 
the basic model presented in this paper. For example, one may change the objective of the lower 
level formulation considering the total cost of the shipments; another possible modification is to 
consider also the population density of the people living in the neighbour of each arc, and in the 
upper level formulation minimize the maximum exposure of the population of each arc. 

 



 
Figure 6: total risk on the network over increasing hazmat tons per shipment. 

 
 

 
Figure 7: maximum risk on the network over increasing hazmat tons per shipment. 
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