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1 Introduction

A widespread strategy to regulate railway traffic in congested areas consists operating in real-
time with strict adherence to an off-line developed timetable. However, unforeseen events
may require to partially modifying the planned timetable, and this real-time process is called
Conflict Detection and Resolution (CDR). Heuristic and exact algorithms for CDR have been
proposed, e.g. by [10, 4, 3].

Time reserves are usually inserted in the timetable to reduce the effects of minor perturbations.
Larger time reserves allow to increase train punctuality, but reduce the capacity of the lines,
i.e. the maximum number of trains per hour. Hence, in congested areas, the amount of time
reserves that can be inserted in the timetable is limited. In order to improve the reliability
of a timetable, without decreasing the capacity of the lines, a recent trend in the Dutch
railway companies [6, 12] is for managing congested areas by planning less detailed in the
off-line phase, and solving all possible conflicts among trains in real-time. The new concepts
of dynamic traffic management [11] and flexible timetable belong to this context. Specifically,
a traditional rigid timetable specifies, for each train and each station, the platform track, the
arrival/departure times and the total order of trains at each merging and crossing point in the
network. A flexible timetable defines (i) a set of feasible platform tracks for each train at each
station, (ii) time windows of [minimum, maximum] arrival/departure times for the trains at
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a set of relevant points (a larger time window corresponding to having more flexibility) and
(iii) a partial order of trains at each merging and crossing point. The complete definition of
these three elements is postponed to real-time management. The idea is that the larger degree
of freedom, let by flexible timetables to the real-time control system, offers the possibility to
better manage rail traffic.

In this paper, we focus on points (ii) and (iii), and study the effectiveness of flexible ar-
rival/departure times as a strategy for improving the timetable robustness. We investigate the
relations between flexibility, timetable robustness and delay minimization.

In order to carry out the analysis, we evaluate the effects of different perturbations occurring in
a network under rigid and flexible timetables. To make the comparison independent from the
particular CDR system, we compute proven optimal solutions and compare train delays when
varying the timetable robustness and the flexibility. To this aim, we model the CDR problem
as a job shop scheduling problem with additional constraints, and formulate it by means of
an alternative graph [7]. A branch and bound procedure allows finding optimal solutions to
practical size instances within short time limits. We carry out an extensive computational
study based on a bottleneck area of the Dutch rail network.

2 Models and algorithms

In this section, we model the CDR problem by means of the alternative graph formulation [7].
Railway networks, under the fixed block signaling system, are organized into track segments
called block section. Each block section can host at most one train at a time. A conflict occurs
whenever two or more trains require the same block section at the same time. The CDR
problem is the real-time problem of finding a conflict free schedule compatible with the real-
time status of the network and such that trains arrive and depart with the smallest possible
delay. Note that, our definition of the CDR problem is slightly different from the one most
used in practice. In fact, while the common practice is to detect and solve conflicts one at a
time, in our definition the aim of CDR is to develop a new conflict free plan, i.e. we consider
the overall CDR problem as a unique problem to be solved in the best way.

The combinatorial structure of the CDR problem is similar to that of the no-store job shop
scheduling problem [8], where jobs correspond to trains and machines to block sections. We
formulate the CDR problem with an alternative graph. This consists of a triple G = (N, F, A),
where N is a set of nodes, F is a set of fixed arcs and A is a set of pairs of alternative arcs. A
feasible solution is obtained by choosing a set S of arcs, exactly one for each alternative pair,
in such a way that graph G(S) = (N, F ∪ S) is acyclic. An optimal solution S∗ minimizes the
length of the longest path in G(S∗) from a dummy node 0, called start node, which precedes
all other nodes, to a dummy node n, called finish node, which follows all other nodes.

An operation is the passing of train Ti through a particular block section Sj, and is associated
to a node ij ∈ N of the alternative graph. Therefore, the route of Ti is a chain of nodes.
An arc (ij, hk) represents a precedence relation between two nodes ij and hk. The starting
time thk of operation hk is constrained to be thk ≥ tij + pijhk, where pijhk is the length of arc
(ij, hk). Fixed arcs correspond to precedence constraints between consecutive operations of
the same train, the arc weights indicating the traversing time of the train through the block
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sections. Since a block section cannot host two trains at the same time, whenever two jobs
require the same block section, there is a potential conflict. In this case, a processing order
must be defined between the incompatible operations, and we model it by introducing in the
graph a suitable pair of alternative arcs (see Figure 1 (a) and (b)). Each alternative arc models
a possible precedence between two operations. Its length, that we call setup time, is the time
between the entrance of the head of a train in a block section and the exit of its tail from the
previous one, plus additional time margins [9].

Figure 1: Alternative graphs for two trains (b) at a junction (a) and a train at a station (c)

The CDR problem consists of assigning a starting time tij to each node ij ∈ N , i.e. of
planning the exact time each train will enter each block section, such that all fixed precedence
relations, and exactly one for each pair of the alternative precedence relations, are satisfied.
By denoting with lS(ij, hk) the length of a longest path from node ij to node hk in G(S), a
feasible assignment of starting times to nodes is tij = lS(0, ij), for ij ∈ N .

The objective of the CDR problem is to minimize the starting time of the finish node tn =
lS(0, n). In what follows, we formally define this objective function. With a flexible timetable,
for each train Ti stopping at platform Sj , a maximum arrival time aij, a minimum dwell time
sij and a minimum departure time dij are associated. Ti is not allowed to depart from Sj before
dij, and is considered late if arriving after aij. The total delay of Ti at Sj is the difference
between its arrival time tij and aij. We partition the total delay in two parts as follows. Let τij

be the earliest possible arrival time of Ti at Sj, computed when the train travels at maximum
speed and disregarding the presence of other trains. If τij > aij , then the quantity τij − aij is
an unavoidable delay that cannot be recovered by real-time rescheduling train operations. We
call max{0, τij − aij} the initial delay of the train. The quantity max{0, tij − max{τij, aij}}
is called consecutive delay, which is due to the solution of conflicts with the other trains in
the network. We do not take into account initial delays in the scheduling phase, and define a
modified due date for Ti at Sj equal to max{τij, aij}. The alternative graph formulation of the
arrival/departure time of Ti at Sj is shown in Figure 1 (c), where sij is the minimum dwell
time and dij is the minimum departure time of Ti at Sj.

We define the quantity δ = mini,j{δij = aij + sij − dij} as the timetable flexibility. In
a rigid timetable, δ = 0 holds. In our computational experiments we study the effects of
varying δ, starting from a rigid timetable. To ensure fairness in the comparison, we set the
maximum arrival times aij equal to the arrival times of the rigid timetable, since increasing
these values would immediately result in reduced train delays without changing their actual
arrival/departure times. Thus, increasing the flexibility δ corresponds to setting the minimum
departure times dij equal to the rigid departure times Dij minus δ, i.e. dij = Dij − δ (see
Figure 1 (c)). In other words, the effect of a larger flexibility δ simply corresponds to the
possibility to depart earlier than planned in the rigid timetable.
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We implemented four algorithms for the CDR problem: two simple dispatching rules that we
use as a surrogate for the human dispatcher behavior, a simple greedy heuristic based on global
information and a branch and bound algorithm.

The first dispatching rule is the First Come First Served (FCFS) dispatching rule, commonly
adopted in railway practice, which simply consists of giving precedence to the train arriving
first at a block section. The second dispatching rule, called First Leave First Served (FLFS),
is as follows. When two trains approach a block section, the time required for each train to
enter and traverse it is first computed. Then, precedence is given to the train which is able
to leave the block section first. The greedy heuristic is the algorithm AMCC described in [7],
which selects one alternative arc at the time, avoiding the one which would cause the largest
delay.

The branch and bound algorithm is described in details in [3]. The lower bound is an adapta-
tion to the railway scheduling problem of the single machine Jackson’s Preemptive Schedule [1].
Implication rules are used to speed up the branch and bound algorithm. We implemented the
implication rules of Carlier and Pinson [2], which are dynamically computed during the execu-
tion of the solution procedure. We also develop static implication rules, which are computed
off-line on the basis of the topology of the rail network, which allow to obtain a significant
speed up of the branch and bound algorithm [3].

The branching scheme used in our algorithm is binary and consists of selecting an alternative
pair of arcs according to the AMCC rule. The search strategy is a mixed strategy in which we
alternate some repetitions of the depth-first visit to the selection of the node with the smallest
lower bound.

3 Computational experiences

In this section, we report our results on practical size instances based on the dispatching area
of Schiphol (Figure 2), a bottleneck area of the Dutch rail network. This includes 86 block
sections, 16 platforms, two largely independent traffic directions and mixed passenger/freight
traffic.

Figure 2: The Schiphol dispatching area network

We considered typical rolling stock characteristics and the provisional Dutch timetable for 2007
[5], a rigid cyclical timetable with 54 trains circulating every hour. Timetable time reserves
are divided into recovery time (obtained by planning trains traveling at less than maximum
speed and designed to recover initial delays) and buffer time (obtained by inserting an extra
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separation time between consecutive trains and designed to reduce consecutive delays).

We construct a flexible timetable by replacing the rigid arrival/departure times with flexible
windows of [minimum, maximum] arrival/departure times. To ensure fairness when comparing
the results for different values of the flexibility, we set the maximum arrival times constant
in all experiments and equal to the rigid arrival times. We set the minimum departure times
equal to the rigid departure times minus δ = {0, 30, 60, 90, 120}, the value δ = 0 corresponding
to the rigid timetable. Hence, four flexible timetables are generated with different flexibility.

We study the network by simulating different real-time traffic conditions, and computing every
time a rescheduling of train operations. We model initial perturbations by letting some trains
enter late the network. Different instances are generated by varying the number of delayed
trains from 7 to 27 and setting the input delay in accordance with a Gaussian or uniform
distribution in a range [0, max], for max varying from 200 to 1800 seconds. In total, we
generate 60 perturbation schemes. For each perturbation scheme, we generate an instance
of the CDR problem for δ = {0, 30, 60, 90, 120}. The algorithms are executed on a laptop
equipped with a 1.6 GHz processor. We evaluate the solutions in terms of maximum and
average consecutive delays, since initial delays cannot be avoided.

Figure 3 shows the maximum and average consecutive delays obtained by the four algorithms
for different values of the flexibility δ. Each value reported in the figure is the average over
the 60 perturbation schemes. For some instances one or more of the three initial algorithms
may fail in the computation of a feasible solution. In order to compare the different results,
for each failure we consider a penalty of 10 minutes for the maximum consecutive delay and 1
minute for the average consecutive delay.

Figure 3: Maximum and average consecutive delays for the four algorithms

As expected, all the four algorithms take advantage of an increasing flexibility, even if the three
initial heuristics exhibit less consistent behaviors. The truncated branch and bound evidently
outperforms the other algorithms. It finds proven optimal solutions in 297 cases out of 300
within the time limit of 120 seconds, and the average computation time is 1.94 seconds. The
First Come First Served (FCFS) and the First Leave First Served (FLFS) rules, being the
most “local” rules, give the worst results. Both maximum and average consecutive delays are
more than double with respect to the values found by the truncated branch and bound. The
solution found by AMCC is similar to the optimal solution, and almost always better then the
solutions found by FCFS and FLFS.

Figure 4 shows the maximum and average consecutive delays obtained by the truncated branch
and bound algorithm when varying the flexibility δ and the timetable robustness. Starting
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from the cyclical timetable of the first set of experiments, we generate a second, less robust,
timetable by removing all buffer times. The three curves in Figure 4 show the propagation of
the 60 perturbation schemes occurring in the first hour over the first, second and third hours
of traffic.

Figure 4: Maximum and average consecutive delays with or without buffer times

For the timetable with buffer times the perturbations of the first hour propagate modestly to
the second and the third hours. On the contrary, for the timetable without buffer times the
perturbations of the first hour propagate significantly up to the third hour. The advantage of
flexibility is especially relevant for the more robust timetable, since a flexibility of 120 seconds
produces approximately 30% of reduction in the maximum consecutive delay. Flexibility be-
comes less effective when the timetable does not include sufficient time reserves. Specifically,
the timetable with no buffer time does not allow to take advantage from a flexibility δ > 30
seconds.

4 Conclusions

Computational experience shows that the flexible timetable is preferable to the rigid one,
since it offers more freedom to solve conflicts and increases punctuality without decreasing the
throughput. The use of advanced optimization algorithms for the CDR problem improves the
benefits of flexible timetables in terms of delay minimization with respect to local dispatching
rules. Finally, the advantage of flexibility is more significant when the timetable contains
buffer time, since it allows CDR algorithms to fully make use of time reserves.
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