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AbstractDe�ning hoie sets is neessary when modeling route hoie be-havior using random utility models. Sine the number of paths be-tween a given origin-destination pair may be intratable, path enu-meration algorithms are used for this purpose.In this paper, we present a new point of view on hoie set genera-tion. In ontrast to existing approahes, we hypothesize that all pathsonneting the origin to the destination belong to the \true" hoieset. In this ontext, we view stohasti path enumeration algorithmsas importane sampling of alternatives. For this type of samplingprotool it is neessary to orret the path utilities in order to obtainunbiased parameter estimates. We propose a stohasti path enumer-ation algorithm that makes the de�nition of suh sampling orretionpossible. Some preliminary numerial results are presented.

1 IntroductionPath enumeration algorithms play an important role in route hoie model-ing with random utility models sine hoie sets are in general unobservable.
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Due to the often very large number of paths, estimating a model based onall elementary paths onneting a given origin-destination (OD) pair maynot be possible. It is therefore neessary to enumerate a limited set ofpaths.Reently, several researhes have turned their attention to hoie setgeneration and its e�ets on route hoie model estimation results (e.g.Bekhor and Prato, 2006, Bekhor et al., 2006 and van Nes et al., 2006).Various heuristis have been proposed in the literature with the objetiveto generate the set of paths a traveler atually onsiders. This set shouldinlude all attrative paths but no unreasonable paths. The modeler de-�nes attrativeness and reasonableness based on observed route hoies andpersonal judgment.In this paper we present a new point of view on path enumeration forroute hoie modeling. In ontrast to existing literature, we hypothesizethat the true hoie set for a given OD pair is the universal one. That is,the set of all feasible paths. The objetive of the hoie set generation isto de�ne hoie sets suh that the model estimation and predition resultsare unbiased. For this purpose we onsider stohasti path enumerationalgorithms as importane sampling approahes. In order to obtain unbi-ased results, it is neessary to orret for this type of sampling protoolwhen estimating and applying route hoie models. We propose a gen-eral stohasti hoie set generation approah and a spei� algorithm thatallows the omputation of sampling orretion.In the following setion we present a review of existing hoie set genera-tion approahes and in Setion 3 an overview of sampling of alternatives. Inpartiular, we derive the orretion for the sampling protool orrespond-ing to the proposed algorithm (desribed in Setion 4). We give somepreliminary numerial results in Setion 5 before presenting onlusionsand disussing topis for future work.
2 Choice Set Generation ApproachesFor a given OD pair the number feasible paths (inluding paths with yles)is unbounded. It is therefore always neessary to onstrain route hoie2
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Figure 1: Illustration of path sets for a given OD pairmodels to a limited number of alternatives. We illustrate in Figure 1 thedi�erent sets of paths for a given OD pair. In general only the set ofelementary paths UE is onsidered whih is a subset of the unboundeduniversal set U . The number of elementary paths is tratable but in realnetworks it is often too large to be enumerated. Existing path enumerationalgorithms for route hoie modeling generates a subset of elementary pathshere denoted ME. The approah proposed in this paper produes a subset
M that may ontain paths with yles.Choie sets an be de�ned based on enumerated paths in two ways.Either, a deterministi way inluding all enumerated paths. Or, in aprobabilisti way using the two-stage hoie model proposed by Manski(1977) (see also Swait and Ben-Akiva, 1987, Ben-Akiva and Boara, 1995,Morikawa, 1996 and Casetta and Papola, 2001). This paper fouses onpath enumeration and for the sake of simpliity we de�ne hoie sets de-terministially.Many heuristis for enumerating paths have been proposed in the liter-ature. These an be divided into deterministi and stohasti approahes.The �rst ategory refers to algorithms always generating the same set ofpaths for a given OD pair. Examples of suh approahes are link elimination(Azevedo et al., 1993), onstrained k-shortest paths (e.g. van der Zijpp andCatalano, 2005), branh-and-bound (Friedrih et al., 2001, Hoogendoorn-Lanser, 2005 and Prato and Bekhor, 2006), labeled paths (Ben-Akiva et al.,3



1984) and link penalty (de la Barra et al., 1993).Two stohasti approahes have been proposed in the literature. Ram-ming (2001) used a simulation method that produes alternative pathsby drawing link impedanes from di�erent probability distributions. Theshortest path aording to the randomly distributed impedane is al-ulated and introdued in the hoie set. Reently, Bovy and Fiorenzo-Catalano (2006) proposed the so-alled doubly stohasti hoie set gener-ation approah. Paths are enumerated by repeatedly omputing shortestpaths where the generalized ost funtion has both random parametersand random attributes. The algorithm has been applied to a multi-modalnetwork.
3 Importance SamplingThe multinomial logit (MNL) model an be onsistently estimated on asubset of alternatives. The probability that an individual n hooses analternative i is then onditional on the hoie set Cn de�ned by the modeler.This onditional probability is

P(i|Cn) =
eVin+lnq(Cn |i)

∑

j∈Cn

eVjn+lnq(Cn |j)
(1)and inludes an alternative spei� term, lnq(Cn|j), orreting for sam-pling bias. This orretion term is based on the probability of sampling Cngiven that j is the hosen alternative, q(Cn|j). See for example Ben-Akivaand Lerman (1985) or Train (2003) for detailed disussions on sampling ofalternatives.If all alternatives have equal seletion probabilities, the estimation onthe subset is done in the same way as the estimation on the full set of al-ternatives. Namely, q(Cn|i) is then equal to q(Cn|j) (uniform onditioningproperty, MFadden, 1978) and the orretion for sampling bias anels outin Equation (1). This simple random sampling protool is however diÆultto use in a path enumeration ontext. First of all, we are unaware of any4



algorithm generating paths with equal probabilities without �rst enumer-ating the full set of paths. Seond, due to the large (possibly intratable)number of paths, a simple random sample is likely to ontain many alterna-tives that a traveler would never onsider. Comparing the hosen path to aset of highly unattrative alternatives would not provide muh informationon the traveler's route hoie.Importane sampling is a more eÆient sheme for path enumerationsine it takes expeted hoie probabilities into aount. Paths whih areexpeted to have high hoie probabilities have higher sampling probabil-ities than paths with lower expeted hoie probabilities. However, forthis type of sampling protool the orretion terms in Equation (1) do notanel out and q(Cn|j) ∀ j ∈ Cn must be de�ned. Note that if alterna-tive spei� onstants are estimated, all parameter estimates exept theonstants would be unbiased even if the orretion is not inluded in theutilities. In a route hoie ontext it is in general not possible to estimatealternative spei� onstants and the orretion for sampling is thereforeessential.We de�ne a sampling protool in the ontext of path enumeration asfollows: a set C̃n is generated by drawing R paths with replaement fromthe universal set of paths U and adding the hosen path to it (|C̃n| = R+1).Eah path j ∈ U has sampling probability q(j) and ∑
j∈U q(j) ≈ 1. Thisapproximation of the sum is based on the assumption that paths with yleshave very small probabilities.The outome of this protool is (k̃1, k̃2, . . . , k̃J) where k̃j is the numberof times alternative j was drawn (∑j∈U k̃j = R).Following Ben-Akiva (1993) we derive the formulation of q(Cn|j) forthis sampling protool. The probability of an outome is given by themultinomial distribution

P(k̃1, k̃2, . . . , k̃J) =
R!

∏
j∈U k̃j!

∏

j∈U

q(j)
ekj . (2)The number of times alternative j appears in C̃n is kj = k̃j + δjc, where cdenotes the index of the hosen alternative and δjc equals one if j = c andzero otherwise. Let Cn be the set ontaining all alternatives orresponding5



to the R draws (Cn = {j ∈ U | kj > 0}). The size of Cn ranges from one to
R + 1; |Cn| = 1 if only dupliates of the hosen alternative were drawn and
|Cn| = R+1 if the hosen alternative was not drawn nor were any dupliates.Using Equation (2), the probability of drawing C̃n given the hosenalternative i an be de�ned as

q(C̃n|i) =
R!

(ki − 1)!
∏

j∈Cn

j6=i

kj!
q(i)ki−1

∏

j∈Cn

j6=i

q(j)kj = KCn

ki

q(i)
(3)where KCn

= R!∏
j∈Cn

kj!

∏
j∈Cn

q(j)kj . We an now de�ne the probability thatan individual hooses alternative i given the set of draws C̃n as
P(i|C̃n) =

e
Vin+ln“

ki
q(i)

”

∑

j∈Cn

e
Vjn+ln“

kj

q(j)

” , (4)where KCn
in Equation 3 anels out sine it is onstant for all alternativesin Cn.In the following setion we �rst present a general stohasti path enu-meration approah that an be ombined with various algorithms. Seondwe propose a biased random walk algorithm that allows for straightforwardomputation of path seletion probabilities.

4 A Stochastic Path Enumeration ApproachThis general stohasti approah for enumerating paths is based on theonept of subpaths where a subpath is a sequene of links. We de�ne theprobability of a subpath based on its distane to the shortest path. Morepreisely, its probability is de�ned by the double bounded Kumaraswamydistribution (Kumaraswamy, 1980) whose umulative distribution funtionis F(xs|a, b) = 1 − (1 − xs
a)b for xs ∈ [0, 1]. a and b are shape parametersand for a given subpath s with soure node v and sink node w, xs is de�nedas

xs =
SP(o, d)

SP(o, w) + C(s) + SP(w, d)
,6
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Figure 2: Kumaraswamy distribution - umulative distribution funtionwhere C(s) is the ost of s, o the origin, d the destination and SP(v1, v2)is the ost of the shortest path between nodes v1 and v2. Any generalizedost an be used in this ontext. Note that xs equals one if subpath s ison the shortest path and xs → 0 as Cs → ∞. In Figure 2 we show theumulative distribution funtion for di�erent values of a when b = 1. Theprobabilities assigned to the subpaths an be ontrolled by the de�nitionof the distribution parameters. High values of a when b = 1 yield lowprobabilities for subpaths with high ost. Low values of a have the oppositee�et.This is a exible approah that an be used in various path enumerationalgorithms inluding those presented in the literature. For example, in analgorithm similar to the link elimination approah but where the hoie ofsubpaths (or links) to be eliminated is stohasti. Another example is agateway algorithm, where a subpath is seleted anywhere in the network,using the probability distribution desribed above. A generated path isomposed of three segments: the shortest path from the origin to the sourenode of the subpath, the subpath itself, and the shortest path from the sink7



node of the subpath to the destination. This gateway algorithm was usedby Bierlaire et al. (2006) (see also Vrti et al., 2006) for modeling longdistane route hoie behavior in Switzerland.In this paper, we use a biased random walk algorithm that is desribedin the following setion.
4.1 Biased Random Walk AlgorithmStarting from the origin, this algorithm selets a link using the probabilitydistribution desribed previously. Another link starting at the sink nodeof the �rst one is then seleted and this proess is applied until the desti-nation is reahed and a omplete path has been generated. The algorithmbiases the random walk towards the shortest path in a way ontrolled bythe parameters of the distribution. If a uniform distribution (speial aseof Kumaraswamy distribution with a = 0 and b = 1) is used then the al-gorithm orresponds to a simple random walk. Note however that a simplerandom walk does not generate a simple random sample of paths.This algorithm has some nie properties that are important for an im-portane sampling approah. First, the path seletion probabilities an beomputed. The probability q(j) of generating a path j is the probability ofseleting the ordered sequene of links Γj

q(j) =
∏

ℓ∈Γj

q(ℓ|Ev, a, b) (5)where ℓ denotes a link, v its soure node and Ev the set of outgoing linksfrom v. In aordane with the approah presented previously q(ℓ|Ev, a, b)is de�ned by the Kumaraswamy distribution using
xℓ =

SP(v, d)

C(ℓ) + SP(w, d)
.A seond property of this algorithm is that any path in U an potentiallybe generated, inluding paths with yles.
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5 Preliminary Numerical ResultsIn order to evaluate the e�ets of sampling orretion we estimate modelson syntheti data from two toy networks. Paths in the �rst network anhave no overlap nor yles. The seond network is more omplex andobservations are generated using a probit model.
5.1 Network with Non-correlated Elementary PathsConsider a network omposed of 40 oriented links onneting two nodes(origin and destination). The universal hoie set inludes onsequently 40non orrelated elementary paths. The links have di�erent lengths (L) andsome have a speed bump (SB). We assoiate a utilityUj = βLLj+βSBSBj+εjwith eah path j, where βL = −0.6, βSB = −0.3 and εj is distributedGumbel (loation parameter set to 0 and sale to 1). 500 observations havebeen generated by assoiating a hoie with the highest utility for eah setof draws of εj ∀ j ∈ U . The true model is hene MNL for this example.We generate a set of paths for eah observation using the biased randomwalk algorithm. The generalized ost funtion is the sum of length andnumber of speed bumps. Moreover, we make 40 draws using distributionparameters a = 2 and b = 1 whih results in hoie sets with 11.9 pathson average (maximum 18 and minimum 7).The estimation results are reported in Table 1. We provide saled o-eÆient estimates where the length oeÆient has been normalized to itstrue value, β̂L = βL = −0.6. The saled speed bump oeÆient is signi�-antly di�erent from its true value −0.3 (t-test statisti 3.67) in the modelwithout orretion but this is not the ase for the model with orretion.This example on�rms the theory on sampling of alternatives for path enu-meration. Namely, a orretion is neessary in order to obtain unbiasedestimation results.
5.2 Network with Correlated PathsThe network is shown in Figure 3 where the origin and destination nodesare marked \O" and \D" respetively. All links have the length of one,9



MNL MNLSampling orretion without with
β̂L -0.203 -0.286Saled estimate -0.600 -0.600Robust std. 0.0193 0.019Robust t-test -10.53 -15.01
β̂SB -0.0194 -0.143Saled estimate -0.0573 -0.300Robust std. 0.0662 0.0661Robust t-test -0.29 -2.17Null log-likelihood -1069.453 -1633.501Final log-likelihood -788.42 -759.848Adjusted �ρ2 0.261 0.288BIOGEME (Bierlaire, 2005, Bierlaire, 2003)has been used for all model estimations.Table 1: Estimation Results for MNL Exampleexept the link in the upper left orner whih has length three and the onein the lower right orner whih has length two. Moreover, the links markedwith SB have a speed bump. The network ontains yles, non elementarypaths an therefore be enumerated with the biased random walk algorithm.Path utilities are assumed to be link-additive and the utility for a link

ℓ is Uℓ = βLLℓ + βSBSBℓ + σ
√

Lℓνℓ with βL = −0.6 and βSB = −0.4. νℓis distributed standard normal and the variane is assumed proportionalto link length with a parameter σ �xed to 0.8. In this ase, observationsan be generated aording to a probit model (Burrell, 1968) by repeatedlyomputing the shortest path (minimizing −Ua) for eah realization of thelink utilities. Note that negative yles are possible sine Uℓ an be positive.The shortest path algorithm annot onverge in the presene of negativeyles and these realizations of the link utilities are therefore ignored. 382observations were generated using 500 realizations of the network.We de�ne a hoie set for eah observation in the same way as for theprevious example but using 30 draws. The size of the hoie sets ranges10
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Figure 3: Example Networkfrom 7 to 19 paths with an average of 13.5 paths.We estimate MNL and path size logit (PSL) models (Ben-Akiva andRamming, 1998, Ben-Akiva and Bierlaire, 2003, Frejinger and Bierlaire,2007) with and without sampling orretion. The results are reported inTable 2. The saled β̂SB is signi�antly di�erent from the true value (−0.4)for both MNL models (t-test statisti of 6.18 and 6.28 respetively). A pos-sible explanation is that the orrelation is ignored in the MNL whih biasesthe results. On the ontrary, the saled β̂SB is not signi�antly di�erentfrom its true value for both PSL models. It seems that the path size termorrets for both sampling and orrelation in this ase. It is interesting toompare the standard deviation of the oeÆient estimates between the twomodels. The estimates in the model with orretion have smaller standarddeviation. This supports the argument that the sampling bias is absorbedby the oeÆients even thought this it does not signi�antly hange theresults for this example. Finally, note that β̂L is not signi�antly di�erentfrom −0.6 for the models without orretion. This is a oinidene sinethe sales of logit and probit models are di�erent.It is diÆult to isolate the e�ets of sampling orretion on the estima-tion results in the presene of orrelation among alternatives. The reason isthat we annot estimate a model, suh as probit, that is exible enough to11



apture the full orrelation struture. The results are therefore neessarilybiased sine the PSL model approximates a nested logit model.MNL MNL PSL PSLSampling orretion without with without with
β̂L -0.627 -0.978 -0.619 -0.969Saled estimate -0.600 -0.600 -0.600 -0.600Robust std. 0.0397 0.032 0.0407 0.0358Robust t-test -15.79 -30.57 -15.22 -27.04
β̂SB -0.0822 -0.0801 -0.347 -0.461Saled estimate -0.0787 -0.0491 -0.336 -0.285Robust std. 0.052 0.0559 0.182 0.158Robust t-test -1.58 -1.43 -1.90 -2.92
β̂PS 1.17 1.74Saled estimate 1.13 1.08Robust std. 0.788 0.705Robust t-test 1.49 2.47Null log-likelihood -988.63 -2769.959 -988.63 -2769.959Final log-likelihood -676.111 -653.396 -674.481 -649.268Adjusted �ρ2 0.314 0.337 0.315 0.340BIOGEME (Bierlaire, 2005, Bierlaire, 2003) has been used forall model estimations.Table 2: Estimation Results for Example with Correlated Paths

6 Conclusions and Future WorkDe�ning hoie sets is neessary for modeling route hoie behavior withrandom utility models. In this paper we propose a new point of view onpath enumeration. In ontrast to existing literature, we hypothesize that allpaths belong to the true hoie set and view stohasti path generation asan importane sampling approah. In order to obtain unbiased parameterestimates it is neessary to orret path utilities for sampling bias.12



We propose a stohasti path enumeration algorithm that allows theomputation of path seletion probabilities and sampling orretion. Pre-liminary numerial results on two small networks are presented. This isongoing researh and several issues and questions remain to be investi-gated.
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