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The user equilibrium (UE) traffic assignment is a corner stone in travel forecasting and
traffic impact analysis. Many algorithms have been proposed over the years for solving the UE
model. For many years the most popular algorithm in practical applications and in software
packages was the Frank-Wolfe (FW) algorithm [LeBlanc et al., 1975], which relies on storing
total link flows. A previous paper [Bar-Gera, 2002] presents an origin-based assignment (OBA)
algorithm, and demonstrates its ability to achieve any desired level of convergence in reasonable
computing time. Other algorithms that achieve high levels of convergence are route-based [e.g.
Larsson and Patriksson, 1992].

Traditional applications of UE models require only estimates of total link flows, which are
uniquely determined by the UE assumption. More and more, analyses of UE model results
are based on route flows, which are not uniquely determined by the UE assumption. Bar-
Gera and Luzon [2006] show that choosing arbitrarily a single solution from all UE route flow
solutions may introduce significant and undesirable errors. Rossi et al. [1989] suggest that the
Maximum Entropy User Equilibrium (MEUE) route flow solution is the most likely one. The
MEUE solution satisfies desirable consistency properties as discussed hereon. In general, well
converging algorithms (route-based or origin-based) typically suffer from fairly poor consistency,
unless special attention is devoted to the issue. The challenge of this research is to develop a
well converging algorithm that maintains reasonable consistency.

A fundamental insight regarding UE models is that the set of UE routes has a special
structure that can be captured by a set of local Paired Alternative Segments (PAS). The main
concept can be illustrated by two simple situations. The first situation is when travelers need to
make a sequence of independent choices, where every choice is between two alternative segments.
For example, considering the network in Figure 1, travelers from origin 1 to destination 8 must

follow segment s;; then they choose between segments s; and s}; they continue along segment,
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Figure 1: An simple example of routes and paired alternative segments (k=3)
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Figure 2: An example of an a-cyclic grid network (k=4)

sii; choose between segments sy and s); continue along segment s;;; choose between segments
sy and s}; and finally follow segment s;, to the destination. Travelers that need to make k
independent decisions of this type, have 2¥ routes to choose from. In addition, the local PAS
Ly = (sq,s4) is also a component of the choice set of travelers from origin 3 to destination 6,
as well as travelers from origin 1 to destination 6 and travelers from origin 3 to destination 8.

The second simple situation is when the network consists of an a-cyclic grid of k+1 by k+1
nodes, like the case shown in Figure 2. All route choices in such a network, for all OD pairs, can
be described by combinations of the k% “around the block” local PASs, like ([1,2,7],[1,6,7]) or

([12,13,18],[12,17,18]). On the other hand, the number of routes from corner to corner (1 to

2k
25 in this example) is ~ 22 (Recall that for k = 10, k¥* = 100 but 2% ~ 1,000, 000.)
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In general networks the structure may be much more complex, but there is always a set of
basic PASs such that the difference between any two UE routes can be described as a combina-
tion of choices related to basic PASs, and the number of basic PASs is typically several orders
of magnitudes smaller than the number of routes [Bar-Gera, 2006]. Realizing the importance
of PASs in the UE model leads directly to the development of a Traffic Assignment by Paired
Alternative Segments (TAPAS) algorithm.

The general principle of the algorithm is very simple. Suppose that we have a current
solution, represented by link-flows disaggregated by origins, and suppose that we have identified
a local PAS, L = (s1(L), s2(L)). Suppose without loss of generality that the cost of segment s,
Cs,, 18 greater than the cost of segment so, ¢,,. For every relevant origin p € P(L), let ¢1(L, p)
be the minimum origin-based link flow for origin p among the links of segment s;(L). Note that
G1(L) = 3 pepry 91(L, p) is the total amount of flow that can be shifted from s; to s. If after
shifting a flow of G(L) from s; to sy still ¢5, > ¢,, then the total amount of flow should be
shifted; otherwise, a simple line search can be used to determine the necessary shift in order to
equalize ¢;, and ¢, (and to minimize the convex optimization objective function). The overall
algorithm is based on storing a set of PASs which are considered in an iterative order for flow
shifts, and in addition on a procedure to update the set of PASs periodically.

In order to update the set of PASs, we find the tree of shortest routes from origin p, and
identify all links used by flows from origin p which are not part of the minimum cost tree for
origin p. For every such “problematic” link, a, it is desirable to have a PAS that will allow
reducing the amount of flow from origin p that uses link a. If there is no such PAS in the
current set of PASs, we may wish to detect a new PAS for link a. The merge node of such PAS
should be the link head, n,, = a;; and one of its segments should consist of links used by origin
p, including in particular the “problematic” link, a. It is reasonable to prefer a PAS whose
other segment is part of the minimum cost tree for origin p. It is also reasonable to prefer a
“local” PAS with short segments, as it is more likely to be shared by other origins. Therefore,
the search for a new PAS focuses mainly on the identification of the diverge node n,. Initially
ng is set to the min-cost predecessor of the merge node n,,. If there is a segment of used links
from ny to the tail of the problematic link a;, we are done. Otherwise, we substitute ny with its

min-cost predecessor, and repeat the same process again. Once a new PAS is found, all origins



that use the high cost segment are added to the list of relevant origins for this PAS.

The main challenge in developing a TAPAS algorithm is to determine how to divide the
computational effort between the different tasks, and particularly when to search for new PASs
and for relevant origins for the PASs. On one hand, timely identification of new PASs and
relevant origins are clearly crucial to allow effective progress of the algorithm. On the other
hand, in many cases the search does not lead to any changes in the set of PASs or in the lists of
relevant origins, and thus may be a waste of time. As part of this research several experiments
regarding this issue are being conducted and will be reported.

Figure 3 shows a comparison of convergence efficiency between the current TAPAS imple-
mentation, OBA [Bar-Gera, 2002] and FW [LeBlanc et al. 1975]. The level of convergence
here is measured by the Average Excess Cost (AEC). The results are for a detailed model
of the Chicago Region with 1,790 zones, 12,982 nodes and 39,018 links. All codes are in C.
The computations were performed on Windows PC machines with 2GB RAM running at 600-
700 MFLOPS. The results clearly show the advantage of TAPAS in comparison to the other
algorithms.

In addition to excellent convergence results, the identification of traveler choices by local
PASs is also essential for consistency. Again the main idea of consistency can be illustrated by
the simple network in Figure 1, which has three local PASs namely L, = (s1, ]); Lo = (2, 5);
Ls = (s3,55). If there are travelers that use the route that goes through segments s, s
and s3, and other travelers that use the route that goes through s/, s, and s, then it seems
unreasonable (or inconsistent) to assume that there would be no travelers using the route that
goes through segments s;, s, and s;.

More generally, PAS L = (s1(L), s2(L)) is considered active in a set of routes R’ C R if each
of the segments of L is part of a route in R/, that is s;(L) C ry; so(L) C r9; and r1,r2 € R'.
PAS L is said to be partly used by R’ if one of the segments, say s;(L), is part of a route in
R/, say 71, but the alternative route, 75, obtained from r; by replacing s, (L) with sy(L), is not
included in R/. If there is an active PAS in R’ that is partly used, then the set of routes R is
not consistent. In other words, a set of routes R’ is consistent if there are no partly used active
PASs. (A general condition for perfect consistency is discussed in [Bar-Gera, 2006].)

Assuming that choices at different PASs are independent, route flows are considered to
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Figure 3: Convergence efficiency comparison for the Chicago Regional model



be consistent if they are proportional. That is if for every PAS L = (s1(L), s2(L)) the same
global proportions p;(L), po(L) = 1 — pi(L) are maintained by the route flows h, , h,, of any
pair of routes ry, 7y that differ by L, meaning that h,, = pi(L) - (hy, + hy,) and h,, = po(L) -
(hy, + hy,). This proportionality condition is in fact an optimality condition of the MEUE
problem. Therefore, a consistent set of routes is essential for consistent/proportional/ MEUE
route flows. By considering all relevant origins for every PAS, as described above, the proposed
algorithm is likely to yield reasonably consistent solutions.

To summarize, in this research we explore a new type of traffic assignment algorithm. The
algorithm is based on identification of local paired alternative segments. Flow adjustments in
the algorithm are applied to these paired segments, in a way that corresponds to consistency
considerations and entropy maximization. Above all the algorithm exhibits high efficiency in

achieving any level of convergence, and particularly when highly converged solutions are needed.
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