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.ilThe user equilibrium (UE) traÆ
 assignment is a 
orner stone in travel fore
asting andtraÆ
 impa
t analysis. Many algorithms have been proposed over the years for solving the UEmodel. For many years the most popular algorithm in pra
ti
al appli
ations and in softwarepa
kages was the Frank-Wolfe (FW) algorithm [LeBlan
 et al., 1975℄, whi
h relies on storingtotal link 
ows. A previous paper [Bar-Gera, 2002℄ presents an origin-based assignment (OBA)algorithm, and demonstrates its ability to a
hieve any desired level of 
onvergen
e in reasonable
omputing time. Other algorithms that a
hieve high levels of 
onvergen
e are route-based [e.g.Larsson and Patriksson, 1992℄.Traditional appli
ations of UE models require only estimates of total link 
ows, whi
h areuniquely determined by the UE assumption. More and more, analyses of UE model resultsare based on route 
ows, whi
h are not uniquely determined by the UE assumption. Bar-Gera and Luzon [2006℄ show that 
hoosing arbitrarily a single solution from all UE route 
owsolutions may introdu
e signi�
ant and undesirable errors. Rossi et al. [1989℄ suggest that theMaximum Entropy User Equilibrium (MEUE) route 
ow solution is the most likely one. TheMEUE solution satis�es desirable 
onsisten
y properties as dis
ussed hereon. In general, well
onverging algorithms (route-based or origin-based) typi
ally su�er from fairly poor 
onsisten
y,unless spe
ial attention is devoted to the issue. The 
hallenge of this resear
h is to develop awell 
onverging algorithm that maintains reasonable 
onsisten
y.A fundamental insight regarding UE models is that the set of UE routes has a spe
ialstru
ture that 
an be 
aptured by a set of lo
al Paired Alternative Segments (PAS). The main
on
ept 
an be illustrated by two simple situations. The �rst situation is when travelers need tomake a sequen
e of independent 
hoi
es, where every 
hoi
e is between two alternative segments.For example, 
onsidering the network in Figure 1, travelers from origin 1 to destination 8 mustfollow segment si; then they 
hoose between segments s1 and s01; they 
ontinue along segment1
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y
li
 grid network (k=4)sii; 
hoose between segments s2 and s02; 
ontinue along segment siii; 
hoose between segmentss3 and s03; and �nally follow segment siv to the destination. Travelers that need to make kindependent de
isions of this type, have 2k routes to 
hoose from. In addition, the lo
al PASL2 = (s2; s02) is also a 
omponent of the 
hoi
e set of travelers from origin 3 to destination 6,as well as travelers from origin 1 to destination 6 and travelers from origin 3 to destination 8.The se
ond simple situation is when the network 
onsists of an a-
y
li
 grid of k+1 by k+1nodes, like the 
ase shown in Figure 2. All route 
hoi
es in su
h a network, for all OD pairs, 
anbe des
ribed by 
ombinations of the k2 \around the blo
k" lo
al PASs, like ([1; 2; 7℄; [1; 6; 7℄) or([12; 13; 18℄; [12; 17; 18℄). On the other hand, the number of routes from 
orner to 
orner (1 to25 in this example) is 0B� 2kk 1CA � 22k. (Re
all that for k = 10, k2 = 100 but 22k � 1; 000; 000.)2



In general networks the stru
ture may be mu
h more 
omplex, but there is always a set ofbasi
 PASs su
h that the di�eren
e between any two UE routes 
an be des
ribed as a 
ombina-tion of 
hoi
es related to basi
 PASs, and the number of basi
 PASs is typi
ally several ordersof magnitudes smaller than the number of routes [Bar-Gera, 2006℄. Realizing the importan
eof PASs in the UE model leads dire
tly to the development of a TraÆ
 Assignment by PairedAlternative Segments (TAPAS) algorithm.The general prin
iple of the algorithm is very simple. Suppose that we have a 
urrentsolution, represented by link-
ows disaggregated by origins, and suppose that we have identi�eda lo
al PAS, L = (s1(L); s2(L)). Suppose without loss of generality that the 
ost of segment s1,
s1, is greater than the 
ost of segment s2, 
s2. For every relevant origin p 2 P (L), let g1(L; p)be the minimum origin-based link 
ow for origin p among the links of segment s1(L). Note thatG1(L) =Pp2P (L) g1(L; p) is the total amount of 
ow that 
an be shifted from s1 to s2. If aftershifting a 
ow of G1(L) from s1 to s2 still 
s1 > 
s2 , then the total amount of 
ow should beshifted; otherwise, a simple line sear
h 
an be used to determine the ne
essary shift in order toequalize 
s1 and 
s2 (and to minimize the 
onvex optimization obje
tive fun
tion). The overallalgorithm is based on storing a set of PASs whi
h are 
onsidered in an iterative order for 
owshifts, and in addition on a pro
edure to update the set of PASs periodi
ally.In order to update the set of PASs, we �nd the tree of shortest routes from origin p, andidentify all links used by 
ows from origin p whi
h are not part of the minimum 
ost tree fororigin p. For every su
h \problemati
" link, a, it is desirable to have a PAS that will allowredu
ing the amount of 
ow from origin p that uses link a. If there is no su
h PAS in the
urrent set of PASs, we may wish to dete
t a new PAS for link a. The merge node of su
h PASshould be the link head, nm = ah; and one of its segments should 
onsist of links used by originp, in
luding in parti
ular the \problemati
" link, a. It is reasonable to prefer a PAS whoseother segment is part of the minimum 
ost tree for origin p. It is also reasonable to prefer a\lo
al" PAS with short segments, as it is more likely to be shared by other origins. Therefore,the sear
h for a new PAS fo
uses mainly on the identi�
ation of the diverge node nd. Initiallynd is set to the min-
ost prede
essor of the merge node nm. If there is a segment of used linksfrom nd to the tail of the problemati
 link at, we are done. Otherwise, we substitute nd with itsmin-
ost prede
essor, and repeat the same pro
ess again. On
e a new PAS is found, all origins3



that use the high 
ost segment are added to the list of relevant origins for this PAS.The main 
hallenge in developing a TAPAS algorithm is to determine how to divide the
omputational e�ort between the di�erent tasks, and parti
ularly when to sear
h for new PASsand for relevant origins for the PASs. On one hand, timely identi�
ation of new PASs andrelevant origins are 
learly 
ru
ial to allow e�e
tive progress of the algorithm. On the otherhand, in many 
ases the sear
h does not lead to any 
hanges in the set of PASs or in the lists ofrelevant origins, and thus may be a waste of time. As part of this resear
h several experimentsregarding this issue are being 
ondu
ted and will be reported.Figure 3 shows a 
omparison of 
onvergen
e eÆ
ien
y between the 
urrent TAPAS imple-mentation, OBA [Bar-Gera, 2002℄ and FW [LeBlan
 et al. 1975℄. The level of 
onvergen
ehere is measured by the Average Ex
ess Cost (AEC). The results are for a detailed modelof the Chi
ago Region with 1,790 zones, 12,982 nodes and 39,018 links. All 
odes are in C.The 
omputations were performed on Windows PC ma
hines with 2GB RAM running at 600-700 MFLOPS. The results 
learly show the advantage of TAPAS in 
omparison to the otheralgorithms.In addition to ex
ellent 
onvergen
e results, the identi�
ation of traveler 
hoi
es by lo
alPASs is also essential for 
onsisten
y. Again the main idea of 
onsisten
y 
an be illustrated bythe simple network in Figure 1, whi
h has three lo
al PASs namely L1 = (s1; s01); L2 = (s2; s02);L3 = (s3; s03). If there are travelers that use the route that goes through segments s1, s02and s3, and other travelers that use the route that goes through s01, s2 and s03, then it seemsunreasonable (or in
onsistent) to assume that there would be no travelers using the route thatgoes through segments s1, s2 and s3.More generally, PAS L = (s1(L); s2(L)) is 
onsidered a
tive in a set of routes R0 � R if ea
hof the segments of L is part of a route in R0, that is s1(L) � r1; s2(L) � r2; and r1; r2 2 R0.PAS L is said to be partly used by R0 if one of the segments, say s1(L), is part of a route inR0, say r1, but the alternative route, r2, obtained from r1 by repla
ing s1(L) with s2(L), is notin
luded in R0. If there is an a
tive PAS in R0 that is partly used, then the set of routes R0 isnot 
onsistent. In other words, a set of routes R0 is 
onsistent if there are no partly used a
tivePASs. (A general 
ondition for perfe
t 
onsisten
y is dis
ussed in [Bar-Gera, 2006℄.)Assuming that 
hoi
es at di�erent PASs are independent, route 
ows are 
onsidered to4
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be 
onsistent if they are proportional. That is if for every PAS L = (s1(L); s2(L)) the sameglobal proportions �1(L); �2(L) = 1 � �1(L) are maintained by the route 
ows hr1 ; hr2 of anypair of routes r1; r2 that di�er by L, meaning that hr1 = �1(L) � (hr1 + hr2) and hr2 = �2(L) �(hr1 + hr2). This proportionality 
ondition is in fa
t an optimality 
ondition of the MEUEproblem. Therefore, a 
onsistent set of routes is essential for 
onsistent/proportional/MEUEroute 
ows. By 
onsidering all relevant origins for every PAS, as des
ribed above, the proposedalgorithm is likely to yield reasonably 
onsistent solutions.To summarize, in this resear
h we explore a new type of traÆ
 assignment algorithm. Thealgorithm is based on identi�
ation of lo
al paired alternative segments. Flow adjustments inthe algorithm are applied to these paired segments, in a way that 
orresponds to 
onsisten
y
onsiderations and entropy maximization. Above all the algorithm exhibits high eÆ
ien
y ina
hieving any level of 
onvergen
e, and parti
ularly when highly 
onverged solutions are needed.A
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