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1 Introduction

In the Dutch railway network, there are a few times per week modifications in
the timetable necessary due to unexpected maintenance projects or planned
maintenance project that finish later than expected. Moreover, there are
about 20 disruptions per day on average. These disruptions can be caused
by the infrastructure (e.g. broken switches, no power supply), the weather
(e.g. longer braking times due to wet leafs on the track), third parties (e.g.
suicides, accidents with other traffic), and the operator itself (e.g. broken
rolling stock engines, sickness of crew). In the Dutch situation, the infras-
tructure manager ProRail is responsible for modifications in the timetable.
However, the rolling stock circulation and the crew schedules are the respon-
sibility of the operators. The main Dutch railway operator, NS, changes
these schedules in its Operational Control Centers. Currently, there is no
decision support at all in these centers. In this research, we develop some
algorithms for crew re-scheduling to support their work.

Crew scheduling is one of the most successful OR applications in the
railway industry (see e.g. Abbink et al. (2005); Fores et al. (2001); Kohl
(2003); Kroon & Fischetti (2001) for applications at several railway compa-
nies). However, only limited research has been done on crew re-scheduling.
In earlier work, Huisman (2005), we developed an approach for the Crew Re-
Scheduling Problem (CRSP) in case of planned maintenance work. As far
as we know, this is the only paper that deals with crew re-scheduling in the
railway world. In this paper, we will apply this approach for re-scheduling
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problems due to unexpected events. These events could be either unplanned
maintenance, which is normally known a few hours up to a few days ahead,
or disruptions, which happen during the operations itself. In that case, a
quick reaction is required. In general, there is about 15 minutes to come up
with a new schedule and communicate it to the drivers and conductors.

In Sections 2 and 3, we repeat the model and algorithm to solve the
CRSP proposed by Huisman (2005). Afterwards, we discuss in Section 4,
some extensions such that the algorithm can be applied in the context of
unplanned maintenance and disruptions as well.

2 Mathematical formulation

The mathematical formulation for the CRSP proposed by Huisman (2005)
is equivalent to a set covering formulation.

Let N be the set of tasks, which need to be scheduled. Furthermore,
let ∆ be the set of original duties that are considered for re-scheduling. In
the case of planned maintenance, this is often the complete set of original
duties, but in case of unplanned events on for instance a single line, this can
be just a subset. Moreover, define Kδ as the set of all feasible duties which
could replace original duty δ ∈ ∆. The costs of a duty k replacing original
duty δ is denoted by cδ

k. The parameter aδ
ik is 1 if task i is part of this duty,

and 0 otherwise. Finally, decision variables xδ
k indicate whether a duty k

replacing original duty δ is selected in the solution or not. The CRSP is then
formulated as follows.

(CRSP):

min
∑
δ∈∆

∑
k∈Kδ

cδ
kx

δ
k (1)∑

δ∈∆

∑
k∈Kδ

aδ
ikx

δ
k ≥ 1 ∀i ∈ N, (2)∑

k∈Kδ

xδ
k ≥ 1 ∀δ ∈ ∆, (3)

xδ
k ∈ {0, 1} ∀δ ∈ ∆,∀k ∈ Kδ. (4)

The objective (1) is to minimize the total costs of the duties. The first set
of constraints (2) guarantee that every task is covered by at least one duty.
The constraints (3) require that each original duty is replaced by at least
one new one. We have “≥” instead of an equality sign, since it is sometimes
possible that, due to the changes in the timetable, more duties are necessary
than in the original schedule. By introducing high fixed costs for each duty,
the number of extra duties will be minimized. In particular, there will be
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no extra duties if they are unnecessary. Moreover, we assume here that an
original duty can always be replaced by a new one. We can guarantee this by
allowing that an original duty is replaced by an empty one, which practically
means that the driver assigned to this duty will get an extra day off or he
can act as a standby driver.

3 Algorithm

In this section we repeat the column generation based algorithm to solve the
CRSP as presented in Huisman (2005). An outline of the algorithm is given
in Figure 1.

Step 0: Initialization
Construct all pieces of work.
Step 1: Generation of “look-alike” duties
Generate for each original duty a (large) set of “look-alike” duties.
These duties form the column pool.
Take a small subset of the columns K as initial set of columns.
Step 2: Computation of dual multipliers
Solve a Lagrangian dual problem with the set of columns K.
Step 3: Selection of new duties
Select duties with negative reduced cost from the column pool and add them to K.
If they are found, return to Step 2;
otherwise, go to Step 4.
Step 4: Generation of new duties
Generate for each original duty a set of new duties with negative
reduced cost, and add them to K until a maximum number of duties has
been added.
Compute an estimate of a lower bound for the overall problem.
If the gap between this estimate and the lower bound found in Step 2 is
small enough (or another termination criterion is satisfied), go to Step 5;
otherwise, return to Step 2.
Step 5: Construction of feasible solution
Solve the remaining set covering problem with the duties in the set K
heuristically.

Figure 1: Algorithm to solve the CRSP

Below, we give a short description of the algorithm. For the details, we
refer to Huisman (2005).

In Step 0, pieces of work are constructed. These are sequences of tasks
on the same rolling stock. These pieces are used to generate the duties later
on. In the first step, for each original duty where at least one of the original
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tasks does not exist anymore, we generate some alternative duties. These
duties should look like the original one. We use Lagrangian relaxation to
obtain the dual multipliers (Step 2). With subgradient optimization (see e.g.
Beasley (1995)) we solve the Lagrangian dual problem. With the multipliers
obtained in Step 2, we can easily calculate the reduced costs of all duties in
the column pool. The best duties with negative reduced costs are added to
K (Step 3). It is very unlikely that a good solution can be found with only
the “look-alike” duties. Therefore, other duties with negative reduced costs
should be generated. This is done in Step 4 by solving a pricing problem for
the original duties. Finally, in Step 5, a feasible integer solution is calculated.
We use the very successful heuristic in the crew scheduling package Turni to
solve the remaining set covering problem. This heuristic is based on the ideas
of Caprara et al. (1999) with some local improvement heuristics.

4 Extensions of the algorithm

The algorithm described in Section 3 is developed for the CRSP in case
of planned maintenance. In that case, the computation time is not very
important. Huisman (2005) showed that real-world problems can be solved
close to optimality, on the other hand the computation times can be up to
20 hours. In case of unplanned maintenance, a computation time of at most
a few hours is acceptable, while in the case of disruptions only a few minutes
is available. On the other hand, the problem instances are smaller, because
in the case of planned maintenance several lines can be out of service, while
in the case of disruptions it is mostly one line. Therefore, it is sufficient to
consider only a subset of the original duties. However, it is not always clear
which ones are necessary. This is an interesting research question on its own.
Due to the smaller instances, and because a similar model and approach is
used by Nissen & Haase (2006) for airline crew scheduling, we believe that
the approach can be adjusted to give quick solutions as well.

We will discuss several ideas to speed-up the algorithm and we will show
its results. These ideas are partial pricing, stabilization techniques, and fast
heuristics to get feasible solutions of the set covering problems in Step 2. The
latter one means that we do not have to first solve the relaxation, but that we
can compute feasible solutions during the column generation process. If the
dispatcher is satisfied by one of these solutions, he can decide to terminate
the algorithm.
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