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1  Introduction 
In order to analyze transportation networks for planning purposes, traffic assignment models have shown 
to be a useful tool. For this reason these models have been applied for many years now. Although static 
models are still widely used, the theory and practice of dynamic models have evolved significantly over 
the last 10 years. This resulted in a shift of focus from static traffic assignment to dynamic traffic 
assignment (DTA) in both research and (commercial) applications.  

DTA models typically describe route choice behavior of travelers on a transportation network and 
the way in which traffic dynamically propagates through the network. A nice overview of DTA approaches 
is given in [1]. Two main approaches can be distinguished, namely (i) a pure analytical approach, and (ii) a 
simulation-based approach. In the pure analytical approach, the DTA problem (typically formulated as a 
variational inequality problem) is directly solved by using well-known optimization techniques. Examples 
are models proposed by [2], [3], and [4]. These models are usually limited to small hypothesized networks, 
as they use solution procedures that do not take advantage of the specific characteristics of the 
transportation problems. On the other hand, simulation-based models are specifically designed for 
transportation problems and can handle larger and more realistic networks. These simulation-based DTA 
models are nowadays widely available and can define the problem either on a microscopic level (e.g., 
PARAMICS, AIMSUN2 with a micro-simulator propagating the network flows), a mesoscopic level (e.g., 
DYNASMART, INTEGRATION), or on a macroscopic level (e.g., INDY, MARPLE with a dynamic 
network loading procedure performing the flow propagation, see [5]).  

In this paper we will propose an analytical dynamic network loading (DNL) procedure as part of a 
macroscopic DTA model in which queuing and spillback are taken into account in a multiclass setting with 
different vehicle types. Attempts of others have some strong restrictions, as will be pointed out in Section 
2, while the model proposed in this paper does not rely on these (unrealistic) restrictions. This will lead to 
a completely time-responsive dynamic queuing model without any assumptions on stationary inflows, 
queue lengths, and/or outflow capacities. The key to the dynamic queuing model is that we do not rely on 
travel time functions that look forward in time, but only use queuing and exit functions that look backward 
in time. The formulation correctly deals with time-varying link attributes, such as inflow and outflow 
capacities and maximum speeds, such that a wide range of dynamic traffic management (DTM) measures 
can be incorporated. 
 
2  Approaches of queuing in dynamic network loading models 
Many macroscopic simulation-based DTA models use DNL models that propagate the traffic flow on the 
links using link travel time functions (see e.g. [6]–[9]), which relate the travel time to the number of 
vehicles on the link at the time of link entrance. Although these models will generally be able to give good 
estimates for average travel times and flows, dealing with specific phenomena such as spillback and DTM 
measures in which changes in capacities play an important role constitute weak points. This is mainly due 
to the fact that the (forecasted) travel times are assumed fixed while traversing the link, while in reality the 
travel time is not known before a vehicle exits the link, as there may be dynamically changing queues and 
dynamically changing outflow restrictions. 

In the literature a few possible approaches for dealing with queues and spillback have been 
proposed. Often, these models consider a horizontal queue (as opposed to the unrealistic vertical queues) 
on a link that is artificially split up into a free-moving part followed by a queuing part. There are typically 
two difficulties: (a) the queue length may change while traversing the link, and (b) the ouflow capacity 
may change while traversing the link. By means of trajectories illustrated in Figure 1 we will explain the 
differences in the approaches and how they deal with the above mentioned difficulties.  
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Figure 1:  Different queuing approaches 

 
Consider a link with a free-moving and a queuing part. In the figure is depicted how the queue 

grows and shrinks over time. Furthermore, consider a vehicle entering the link at time instant t. We are 
interested to know what time instant this vehicle will exit the link. 

In [2] a model is proposed in which the queue length at link entrance (time t ) is considered, and 
then the link exit time is calculated by computing the time in the free-moving part and in the queuing part, 
assuming that neither the queue length, nor the outflow capacity will change (which we will call an 
instantaneous queue approach). This leads to exit time .It However, the queue length may change (due to 
vehicles entering the queue from the free-moving part and vehicles leaving the queue flowing out of the 
link). This problem was solved by [10] by realizing that all vehicles that are in the free-moving part at time 
t will have entered the queue when our considered vehicle enters the queue. By assuming a fixed outflow 
capacity, it is possible to determine the exact queue length, which leads to an exit time of IIt  (so-called 
variable queue approach). Note that their approach is only valid if no overtaking finds place in the free-
moving part, hence it will not hold in case of multiple vehicle types where first-in-first-out (FIFO) does not 
hold between all vehicles. In [11] FIFO is not required in the free-moving part, as they look backwards 
from the tail of the queue. However, they also compute the travel time assuming that the outflow capacity 
does not change. In this paper we propose an approach that also does not require FIFO to hold in the free-
moving part, but can take changing outflow capacities into account (so-called dynamic queue approach). 
For example, if the outflow capacity decreases at 't  (e.g., due to spillback, or DTM measures, or even just 
by changing composition of vehicles in the queue with respect to directions, etc), then the actual exit time 
will be .IIIt  Clearly, the true travel time is not known until the time of exiting the link, hence using link 
travel time functions may yield incorrect travel times that are not consistent with capacity constraints.  

Besides approaches splitting links into two parts, other approaches exist, e.g. the physical queue 
approach. This approach is described in models such as the cell transmission model (CTM, [12], and more 
recently in the link transmission model (LTM, [13]). As these models rely on FIFO, multiple vehicle types 
cannot be taken into account, although they have the advantage that shockwaves can be modeled more 
easily. 
 
3  Model framework 
Consider a given transport network ( , )G N A=  consisting of nodes N and directed links A having certain 
attributes, and a given dynamic vehicle type specific travel demand for each origin-destination (OD) pair 
( , ),r s  each vehicle type m, and each departure time k. The DTA model framework is a typical route-based 
framework consisting of three main parts: (1) a route set generation model, (2) a route choice model, and 
(3) a dynamic network loading (DNL) model. The first two models are the same as in the INDY model 
described in [5] and [9]. We will restrict ourselves to describing the DNL model with dynamic queuing. 
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The DNL model simulates the route flows (determined by the route choice model) along the links 
in the network. This model is at the heart of the DTA model and is also the most computationally intensive 
part. A completely new DNL model has been developed, which has dynamic queuing possibilities and 
does not have the drawbacks from most DNL models based on link travel time functions (see the previous 
section). This DNL model consists of a link model and a node model. Both will be discussed in more detail 
in the next sections. 

 
4  Link model 
The link model describes the propagation of the flow through each link, taking into account different 
speeds for different vehicle types and a dynamic horizontal queue. The main outcomes are the link inflows, 
queue inflows, queue lengths, and link travel times. 

Consider a link a A∈  in network G for which the following attributes are given: link length aL  
[km], maximum speeds per vehicle type max

amϑ  [km/h], and a queue density aJ  [passenger car units 
(pcu)/km]. Also, an unrestricted inflow capacity aC  [pcu/h] is given for each link, however this attribute 
will only be used by the node model, see Section 5. As mentioned in Section 2, we will (artificially) split 
each link into a free-moving part and a queuing part, conform Figure 2. The lengths of the free-moving 
part and the queuing part, denoted by ( )f

aL t  and ( )q
aL t  respectively, are variables in the model. Splitting 

the link into these two parts is also important from a multiple vehicle type point of view. In the queue all 
vehicle types are assumed to travel at the same speed, while in the free-moving part vehicle types may 
travel at different speeds and may overtake each other. Hence, first-in-first-out (FIFO) need not be satisfied 
among different vehicle types, but typically is assumed to hold within each vehicle class. 
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Figure 2:  Link variables 
 

The variables ( ),amU t  ( ),amQ t  and ( )amV t  denote the cumulative link inflow, cumulative queue 
inflow, and cumulative outflow of link a at time t, respectively. In case there is no queue, ( ) ( ).am amQ t V t=  
The number of vehicles of each vehicle type in the free-moving part, ( ),f

amX t  and the number of vehicles 
in the queuing part, ( ),q

amX t  then are 
  

( ) ( ) ( ), andf
am am amX t U t Q t= − ( ) ( ) ( ).q

am am amX t Q t V t= −  (1)
 

The link inflow rate ( )rs
ampu t  is determined by the corresponding outflow rate ' ( )rs

a mpv t of the 
previous link 'a  on route p, or (in case link a is the first link on route p) given by the route flow rate 

( ).rs
mpf t  This leads to the following flow conservation constraint: 

 

' ( ), if '  is the previous link on route ,
( )

( ), if  is the first link on route .

rs
a mprs

amp rs
mp

v t a p
u t

f t a p
⎧⎪= ⎨
⎪⎩

 (2)

  

Then, the vehicle type m specific cumulative inflows ( )amU t  (and similar for ( )amV t ) can be computed as 
 

0
( , )

( ) ( ), with ( ) ( ) ,
rs

m

trs rs rs
am amp amp amp

r s p P

U t U t U t u d
ω

ω ω
=

∈

= =∑ ∑ ∫  (3)
 

It is important to note that the link outflow rates ( )rs
ampv t  are determined by the node model (see 

next section) taking capacity constraints into account, and are not determined by a flow propagation 
constraint as usual in a link model using link travel time functions. As mentioned in Section 2, using flow 
propagation based on link travel time functions may violate capacity constraints. In our model, only the 
outflow out of the free-moving part is determined by a flow propagation constraint, which does not corrupt 
any existing capacity constraints at the end of the link. Instead of determining a travel time (for the free-
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moving part) at the time of link entrance, only a speed is computed per vehicle type. This is due to the fact 
that the travel time in the free-moving part will be unknown, since the future position of the tail of the 
dynamic queue is unknown. By choosing the speeds max( ) ,am amtϑ ϑ=  FIFO will hold within each vehicle 
type. 

Assume a given link-specific queue density aJ  (pcu/km). The total number of pcu’s in the queue 
is defined by ( ),q

m amm
X tρ∑  where mρ  denotes the vehicle type specific pcu-value. The length of the free-

moving part, ( ),f
aL t  can then be determined as 

 

( )
( ) ( ), where  ( ) .

q
m amf q q m

a a a a
a

X t
L t L L t L t

J
ρ

= − = ∑  (4)

  

Note that if ( ) ,q
a aL t L=  spillback will occur to previous link(s) by restricting the inflow into link a, see the 

node model in Section 5. A vehicle of type m entering link a at time ω  with speed ( )amϑ ω  will reach the 
tail of the queue at time t if  ( )( ) / ( ) .f

a amL t tω ϑ ω+ ≤  Hence, the cumulative queue inflow is given by 
 

( )

( )( ) ( ) , with  ( ) | .
( )

f
rs rs a
amp ampt

am

L tQ t u d t t
ω

ω ω ω ω
ϑ ω∈Ω

⎧ ⎫
= Ω = + ≤⎨ ⎬

⎩ ⎭
∫  (5)

 

Then, the queue inflow rates ( )rs
ampq t  and the total cumulative queue inflow ( )amQ t  can be computed as 

 

( )
( ) , and

rs
amprs

amp

dQ t
q t

dt
=

( , )
( ) ( ).

rs
m

rs
am amp

r s p P

Q t Q t
∈

= ∑ ∑  (6)

 

Note that no travel times need to be computed for the flow propagation. However, the link travel 
times are usually an important output of the model, hence we will compute them afterwards. Since FIFO 
per vehicle type holds, the link travel time ( )am tτ  for type m vehicles entering link a at time t is given by 
  

( )1( ) ( ) .am am amt V U t tτ −= −  (7)
 

To illustrate the flow propagation in the link model with dynamic queuing, consider two 
consecutive links, where the first link has length 10aL =  [km], a queue density of 200aJ =  [pcu/km], and 
where the outflow capacity of the first link is bounded from above by the capacity of the second link being 
4,000 [pcu/h]. Consider two vehicle types, cars ( 1m =  with 1 1ρ = ) and trucks ( 2m =  with 2 2.5ρ = ), 
having fixed speeds 1( ) 120a tϑ =  [km/h] and 2 ( ) 80a tϑ =  [km/h] in the moving part of the link. The 
computation of the outflow rates given current capacities will be explained in more detail in the node 
model in the next section. In this example, the node model and capacity constraints are very simple. 
Concentrating on the first link, the actual outflow rates will be simply bounded from above by the outflow 
capacity.  

The travel demand for both vehicle types is given in Figure 3(a), where the travel demand for 
trucks is assumed to be 20% of the travel demand for cars. Also indicated is the total travel demand in 
terms of pcu, where we assume the inflow capacity into the first link is sufficient to accommodate the 
travel demand for each time instant. However, the outflow capacity (4,000 pcu/h) may prevent the flow 
from entering the second link. Furthermore, we assume that after an hour (at * 3600t s= ) the outflow 
capacity drops to 2,000 pcu/h, e.g. due to an accident on the second link. 

The results are shown in Figures 3(b)-(d). Just before 1000t s=  the entering flow reaches 4,000 
pcu/h (see Figure 3(a)). This flow will reach the end of the link after the free-flow travel time elapses, i.e. 
after 300s and 450s for cars and trucks, respectively. Hence, a queue builds up some time after 1000 ,t s=  
see Figure 3(c). Clearly, the queue length is immediately affected whenever the outflow rate drops at 

* 3600 .t s=  The link travel times for cars and trucks are shown in Figure 3(d), where it should be pointed 
out that time instant t is the time of link entrance. This picture makes the difference between the 
instantaneous queue and the dynamic queue very clear. Already around link entrance time 2500t s=  there 
is (correctly) a strong increase in the link travel time, even though the drop in capacity does not happen till 

* 3600 .t s=  At 2500t s=  the travel time for cars is approximately 1100s, hence at 3600t s=  they reach 
the end of the link, exactly when the capacity drops to 2,000 veh/h. In models using an instantaneous 
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queue this increase in travel time would not occur until 3600 ,t s=  which clearly deviates significantly 
from the correct time instant. Further note that the travel time of cars is always less than (or equal to) the 
travel time of trucks. In free-flow conditions, the travel time of trucks is 50% higher than the car travel 
time. During congestion the two travel times converge, as the travel time inside the queue is the same for 
all vehicle types. The differences in travel time in the moving part are not the main reason for the 
differences in travel time during congestion, as vehicles have to wait in the queue anyway till they can exit 
the link. The difference in travel time is mainly explained by the number cars overtaking the trucks, 
causing extra delay for the trucks. Note that after 4000t s=  the travel times for both cars and trucks are 
(more or less) the same, since the travel demand becomes very low such that the number of overtaking cars 
does not cause a significant extra delay for trucks.   

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000

1( )f k

k (sec.)*t
0 1000 2000 3000 4000 5000 6000

0

500

1000

1500

2000

2500

3000

3500

*t

2 ( )f k

11( )U t
11( )Q t

11( )V t

12 ( )U t
12 ( )Q t 12 ( )V t

capacity

capacity

1 2( ) 2.5 ( )f k f k+

In
flo

w
 ra

te
 [v

eh
/h

]

C
um

ul
at

iv
e 

flo
w

s [
ve

h]

t (sec.)

0 1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

t (sec.)*t
0 1000 2000 3000 4000 5000 6000

0

1

2

3

4

5

6

7

8

9

10

1 ( )qL t

t (sec.)*t

11( )tτ

12 ( )tτ

Tr
av

el
 ti

m
es

 [s
ec

.]

Q
ue

ue
 le

ng
th

 [k
m

]

(a) (b)

(c) (d)  
Figure 3:  Application of the link model to a simple bottleneck 

   

5  Node model 
The node model relates the inflows into and outflows out of each node, taking into account the inflow 
capacities into outgoing links, and the potential outflow rates from incoming links. The capacity 
constraints of links are therefore completely managed by the node model, not the link model. The 
outcomes of the node model are the OD-, path- and vehicle type dependent dynamic outflow rates ( ).rs

ampv t   
Consider a node n N∈  in network G having a set in ( )B n  of incoming links and a set out ( )B n  of 

outgoing links, see Figure 4. Each incoming link in ( )a B n∈  has some potential outflow rates ( ),rs
ampv t  

consisting of vehicles arriving at the end of the link (queued or not queued) at time t. However, the actual 
outflow rates ( )rs

ampv t  may be smaller than these potential outflow rates due to capacity restrictions. Each 
outgoing link out ( )b B n∈  has a certain inflow capacity in ( )bC t  which can change over time due to queue 
spillbacks or DTM measures. The potential outflow rates in the direction of b share this limiting capacity.  

The inflow capacity in ( )bC t  depends on whether the queue on link b is spilling back or not (or if a 
DTM measure changes the inflow capacity). If there is no spillback (i.e., ( )q

b bL t L< ), then the inflow 
capacity is equal to the unrestricted capacity .bC  On the other hand, if there is spillback, then the inflow 
capacity is set to the current outflow out of that link. Mathematically, 

 

in

( , )

, if  ( ) ,
( ) ( ), otherwise.

rs
m

q
b b b

rsb m bmp
r s m p P

C L t L
C t v tρ

∈

⎧ <⎪= ⎨
⎪⎩
∑∑ ∑  (8)
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Figure 4:  Node variables 
     

In order to compute the potential outflow rates ( ),rs
ampv t  we have to determine the flow rates at the 

head of the queue. In case there is no queue, the potential outflow rates are simply equal to ( ).rs
ampq t  

However, if there is a queue, it will be assumed that all lanes will be used by vehicles in the queue and that 
the total potential outflow is equal to the capacity of the link, .aC  The potential outflow rates are then 
functions of earlier queue inflow rates *( ( )),rs

amp aq t t  where * ( )at t  is the time instant in which the vehicles 
now at the head of the queue entered the tail of the queue. Since FIFO holds in the queuing part, this time 
instant can easily be determined by ( )* 1( ) ( )a a at t Q V t−=  with ( ) ( )a m amm

Q t Q tρ=∑  and 
( ) ( ).a m amm

V t V tρ=∑  Of importance is that the outflow rate proportions are conserved between each OD-
pair, each path, and each vehicle type (again, due to FIFO). Therefore, the proportions between the queue 
inflow rates *( ( ))rs

amp aq t t  should transfer to proportions of the potential outflow rates sharing the link 
capacity .aC  Hence, the potential outflow rates are determined by 

 

*

' ' *
' ' '

( ', ') ' '

( ), if  ( ) 0,
( ( ))( ) , otherwise.

( ( ))
rs

m

rs q
amp b

rsrs amp aamp
ar s

m am p a
r s m p P

q t L t
q t tv t C

q t tρ
∈

⎧ =
⎪⎪= ⎨
⎪
⎪⎩
∑ ∑ ∑

 (9)

 

Since multiple paths can use the same outgoing link, the directional potential outflow rates ( )b
amv t  

describing the (vehicle type specific) outflow from link a to link b will be used (see also Figure 4): 
  

{ }( , ) |

( ) ( ).
rs

m

b rs
am amp

r s p P b p

v t v t
∈ ∈

= ∑ ∑  (10)
 

Knowing the boundaries on the inflows and outflows, the actual outflow rates ( )rs
ampv t  should be 

determined. The determination of these actual outflow rates is not trivial for a general node with multiple 
incoming and outgoing links and with multiple vehicle types. In the cell transmission model in [14], these 
outflow rates are computed for a simple merge and a simple diverge. These computations are essentially 
based on a linear programming (LP) problem in which the throughput of the node is maximized subject to 
capacity constraints and proportion conservation constraints. Adopting this idea, and extending it to a 
general node with multiple in- and outgoing links and multiple vehicle types, leads to the following LP 
formulation: 

in out( ) ( ) ( )

max ( )
b
am

b
am

v t ma B n b B n

v t
∈ ∈
∑ ∑ ∑  (11)

   

s.t.                                        
in

in out

( )

( ) ( ), ( ),b
m am b

ma B n

v t C t b B nρ
∈

≤ ∀ ∈∑ ∑  (12)
   

in out( ) ( ), ( ), ( ), ,b b
am amv t v t a B n b B n m≤ ∀ ∈ ∀ ∈ ∀  (13)

   

in out
' '

' ' ' '

( ) ( ) ( ) ( ) ( ) ( ), , , , ' ( ), , ' ( ), '.
( ) ( ) ( ) ( ) ( ) ( )

b b b b b b
am am am am am am
b b b b b b
a m a m am am am am

v t v t v t v t v t v t a a B n b b B n m m
v t v t v t v t v t v t

= = = ∀ ∈ ∀ ∈ ∀ ≠  (14)

  

The objective function is the total outflow through node n at time t, Eqns. (12) and (13) describe the 
outflow and inflow constraints, respectively, and Eqns. (14) ensure flow proportion conservation. These 
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proportion conservation constraints typically hold for freeway traffic if we assume that flow in a capacity 
constraint direction also constrains flow in other directions (assuming a single queue on each link). It can 
be shown (see [15]) that solving this LP problem yields the following analytical solution: 

 

out '

in
'' ( )\{ '| ( ) 0}
'

'

( )( ) min ( ), ( ) ,
( )b

am

b
b b am
am am bbb B n b v t

m a m
a m

v tv t v t C t
v tρ∈ ≥

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

∑∑
   such that   

( )
( ) ( ).

( )

rs
amprs b

amp amb
am

v t
v t v t

v t
=  (15)

  

Clearly from this expression, the actual outflow is either the potential outflow if the capacity constraints 
are not binding, or the actual outflow is a proportion of the available capacity.  

As an example, consider a node with two incoming and two outgoing links (see Figure 5). 
Furthermore, assume that two vehicle types are present. The directional potential outflow rates ( )b

amv t  and 
the inflow capacities in ( )bC t  are given, where the potential outflow rates have already been converted to 
pcu’s for convenience. What can be observed is that link 3 is the bottleneck with a capacity of 2,000 pcu/h, 
while in total 2,500 pcu/h would like to enter this link. Link 3 will be used at capacity, constraining the 
outflows out of links 1 and 2 in the direction of link 3. Because the flows from these links are constrained, 
the flows to link 4 will also be constrained (although 4,500 pcu/h could potentially flow into link 4, only 
3,600 pcu/h actually enters link 4).  
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Figure 5:  Application of the node model on a two-link in, two-link out node 
 
6  Application 

In order to illustrate the applicability of the proposed model in a larger real-life network, the model 
has been implemented (although currently only for one vehicle type) in the INDY DTA software and has 
been successfully tested on some small hypothesized networks. Queues were correctly formed upstream 
bottlenecks. The model presented in this paper is defined in continuous time, hence a discretization scheme 
was needed for implementation. This discretization scheme is not trivial, but it is beyond the scope of this 
paper to describe the discretization and the algorithm. Details can be found in [15]. Here we will just 
briefly mention an application on a reasonably large real-life network.  

The application involves an evacuation study in the Voorne-Putten area near Rotterdam in The 
Netherlands, see Figure 7. This area is surrounded by water and has only five exit points (as indicated) to 
get to the main land. Hence, in case of a flooding, the approximately 150,000 inhabitants of a few smaller 
cities have to evacuate using one of these five exit points. The aim of the study was to design evacuation 
plans for all inhabitants (consisting of the appointed exit points, routes, and departure times) that minimize 
the total evacuation time. The network consists of approximately 1,500 nodes and 6,000 directed links. In 
total there are 468 zones, of which 5 destinations and 463 origins. Results showed that evacuation of the 
city of Spijkenisse was the bottleneck. Long queues in the direction of exit point 4 existed in most 
scenarios (as indicated in the figure on the right-hand side), spilling back in multiple directions. The 
dynamic queuing model in the DNL model seems to give plausible and realistic outcomes. More on the 
evacuation study can be found in [16]. 
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7  Conclusions 
Analytical dynamic network loading models typically have difficulties to correctly deal with flow 

propagation, queue formation, and spillback. Most of these difficulties are caused by the adoption of link 
travel time functions, which are not able to capture queue dynamics correctly. Cell-transmission and link-
transmission models (CTM/LTM) typically overcome this problem, but are restricted to homogeneous 
vehicle types and typically assume simple intersection layouts.  

In this paper a new analytical dynamic network loading model is proposed, consisting of a link 
model and a node model. In this new model, multiple vehicle types can be taking into account, queue 
formation and spillback is correctly handled, and general intersection layouts can be used in the node 
model. The link model abandons the use of link travel time functions to maintain consistency between the 
travel times and dynamically changing queues. A general node model has been proposed to enable the 
distribution of the capacity to the corresponding directions. The model has been implemented in the INDY 
DTA software and has been successfully run on a fairly large real-life network in the application presented. 
Special attention needs to be paid to gridlocks, as capacity constrained models typically may suffer from 
this, and our proposed model is no exception. It should be noted that the proposed model can handle 
dynamic changes of network attributes (by means of events in INDY), such as capacities, hence traffic 
lights and dynamic traffic management measures can be simulated. 

The proposed model has also some drawbacks. It is not able to describe shockwaves, as it 
explicitly assumes an artificial split of each link into a single moving part (at the beginning of the link) and 
a single queuing part (at the end of the link). Currently, research is conducted to include shockwaves and 
multiple queuing parts into the model. Models based on cell/link-transmission are able to deal with 
shockwaves explicitly, which may lead to a more realistic description of moving queues and even multiple 
queuing parts on a single link. However, extending CTM/LTM to include multiple vehicle types (with 
different speed-density relationships) remains a challenge to researchers that is still unsolved and will be 
difficult to solve due to the explicit assumption of first-in-first-out (FIFO) of vehicles on a link (which no 
longer holds in case of multiple vehicle types). 
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