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Abstract

The traveling salesman problem is one of the most famous combinatorial optimization
problems, and has been intensively studied in the last decades. Many extensions to the basic
problem have been also proposed, with the aim of making the resulting mathematical models
as much realistic as possible.

We study an extension to the basic problem where travel times are specified as a range of
possible values. This model reflects the intrinsic difficulties to estimate travel times exactly
in reality. The robust deviation criterion is adopted to drive optimization over the interval
data problem so obtained. A negative result about the approximability of the problem is
presented together with fast and easy-to-implement heuristic approaches.

Computational experiments are presented and discussed.

1 Introduction and problem description

A variation of the classic symmetric traveling salesman problem (TSP) is studied in this paper.
The variation is motivated by the observation that estimating travel times exactly is often a
difficult task, since they depend on many factors that are difficult to predict. Uncertainty about
data should be consequently taken into account. We treat the case where the only information
available is represented by a set of equally possible values for each travel time. We optimize the
resulting problem according to the robust deviation criterion (see Kouvelis and Yu [6]). A robust
tour is, intuitively, a tour which minimizes the maximum deviation from the optimal tour over
all realizations of edge costs.

The robust TSP with interval data is defined on an undirected graph G = {V, E'}, where V is a
set of vertices, with vertex 0 associated with the depot, and vertices 1, ..., |V| representing the
cities to be visited, and E is the set of edges of the graph. An interval [l;;, u;;], with 0 < l;; < uyj,
is associated with each edge {i,j} € E, and represents the possible travel times. The objective
of the optimization is to find a Hamiltonian cycle (tour) with the minimum cost, according to
the cost function associated with the notion of robust deviation. In order to formally describe
the robust TSP, we need the following definitions. A scenario R is a realization of the edge
costs, i.e. a cost cf} € [lij, ui;] is chosen for each edge of the graph. The robust deviation
of a tour t in scenario R is the difference between the cost of ¢ in scenario R and the cost of
a shortest tour in R. A tour ¢ is said to be a robust tour if it has the smallest (among all
possible tours) maximum (among all possible scenarios) robust deviation.

2 MILP formulation

Theorem 1 (Montemanni et al. [9]) Given a tour t, the scenario R that mazimizes the
robust deviation for t is the one where all the edges of tour t have the highest possible cost, and
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the costs of the remaining edges are at their lowest possible value, i.e. cf} =y V{i,5} €t and
cff =1 v{i,j} ¢ t.

We are ready to give a mathematical formulation of the robust traveling salesman problem.
Variables = are {0, 1} variables that identify the edges of the robust deviation tour: z;; = 1 if
edge {1, 7} is on the robust tour; 0 otherwise. Variables y define the shortest tour of the scenario
induced by the tour defined by x variables: y;; = 1 if edge {i,j} is on the shortest tour; 0
otherwise. In the formulation we will also refer to the set of all possible tours on graph G as
TSP.

The problem can be formalized in a compact way as follows:

min < max Z c.xii — min Z i 1
2€TSP | seS | < W yeTsp ) 4 ii¥ii (1)
{i,j}eE {i,j}elE

Using the result of Theorem 1, (1) can be rewritten as follows:

xgl']%:lp Z UijTij yén;gp{(lw + (uw ll])xl])ylj} (2)
{ijteE

The result of Theorem 1 has been used to give a closed form definition of the shortest tour in
the scenario defined by x variables.

Formulation (2) can be reduced to a mixed integer linear program by adding a free variable
r, that will contain the regret term now expressed through the nested min operator, and by
inserting a new set of linear constraints. What we obtain, after a reorganization of terms, is the
following formulation:

(RTSP) min Z U5 T55 — T (3)
{i,j}eE
s.t. r < Z yijlij + Z yij(uij — lij)Iij Y RS TSP (4)
{i,j}eE {i,j}eE
x € TSP (5)

Constraint (5) states that x variables must be constrained to form a Hamiltonian cycle. Any
feasible mixed integer programming formulation for the classic traveling salesman problem can be
used for this purpose. A survey on these formulations can be found, for example, in Langevin et
al [7]). Constraints (4) substitute the nested min operator and incorporate the result of Theorem
1 for the calculation of the maximum robust deviation of the tour defined by x variables. Notice
that in these inequalities, y plays the role of a constant vector representing a tour.

3 Approximation algorithms

When a problem is NP-hard, this does not prevent the case that it can be approximated quite
well, i.e. it admits an r-approximation algorithm that always returns in polynomial time a
solution that is within r times the optimal value, for any fixed approrimation ratio r (see
e.g. Hochbaum [3] for an excellent glimpse on the subject). However, we start this section
by observing that in the worst-case, when robustness comes into play, then obtaining “good”
solutions is as hard as computing optimal solutions. More precisely, unless P=NP, there does not
exist any r-approximation algorithm for the robust version of the problem, for any arbitrarily
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large r > 1. This inapproximability result holds not only for the traveling salesman problem,
but for any NP-hard classic combinatorial optimization problem. This gives a measure of the
additional complexity when the robustness criterion we consider is taken into account with an
NP-hard problem.

Theorem 2 (Montemanni et al. [9]) For any NP-hard classic combinatorial optimization
problem, no polynomial time r-approximation algorithm (for any r > 1) can exist for the robust
deviation/interval data version of the problem, unless P=NP.

Theorem 2 suggests that even when NP-hard special cases of the classic TSP can be approxi-
mated arbitrarily close to the optimum (see e.g. Arora [1]), the corresponding robust counterpart
cannot be approximated in polynomial time within any arbitrarily large approximation ratio,
unless P = NP.

Besides this negative result, we mention that Kasperski and Zieliniski [5] provided a polynomial
time approximation algorithm with a performance ratio of 2 for the minmax regret versions of
classical combinatorial optimization problems that are polynomially solvable.

Taking inspiration by the approach used in Kasperski and Zieliniski [5] and by using well-known
heuristic algorithms for the classic traveling salesman problem, we suggest the following heuris-
tics for the addressed problem.

4 Heuristic Algorithms HU and HM

The method we propose is based on the construction of an ad-hoc scenario and on the solution of
the related classic traveling salesman problem. The resulting tour will also be a feasible solution
for the robust problem. We consider in particular two scenarios, that according to Kasperski and
Zielinski [5] are the most promising ones: scenario U (all the costs at the highest possible value)

and scenario M, defined as follows: ¢}/ = %;l”) V{i,j} € E. According to Kasperski and
Zieliniski [5], the optimal solution of the classic TSP on scenario M, if available, would guarantee
a 2-approximation for the optimal solution of the robust TSP itself, while scenario U has been
proven to perform well (often better than M) for the robust counterpart of some combinatorial
optimization problems (see Kasperski and Zielinski [4], Montemanni and Gambardella [10]). It
is important to stress that we cannot guarantee a “good” approximate solution in polynomial

time for our algorithm, without solving to optimality the classic problem on scenario M.

In the reminder of this paper we will refer to the heuristic algorithm based on scenario U as
HU, and to that based on scenario M as HM.

Note that it may be prohibitive to set up more complex heuristic methods, like metaheuristics,
where the evaluation of costs has to be carried out many times. This happens because the
evaluation of the robustness cost of a tour is already an NP-hard problem (a classic traveling
salesman problem has to be solved on the scenario induced by the tour under evaluation).

4.1 Computational experiments
4.1.1 Implementation details

We coded the algorithms in ANSI C. The callable library version of heuristic algorithm LKH 1.3
for the classic traveling salesman problem is embedded in our implementation (exact method
Concorde 03.12.19 is used to calculate robustness costs). The total computational complexity
of the overall heuristic algorithm is as follows: the time required to construct scenarios M and
U is bounded by O(]V|?), since each edge of the graph has to be processed. Producing an upper
bound for the (classic) cost of the optimal tour in a given scenario has, in our implementation,
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an experimental approximate running time of O(|V|*2?) (see Helsgaun [2]). This last bound
dominates the other.

4.1.2 Results

All the tests have been carried out on an Intel Pentium 4 1.5 GHz / 256 MB machine. We used
two families of benchmarks: pure random problems (indicated as R-*) and problems derived
from TSPLIB instances® (indicated as name-* where name is the name of the original TSPLIB
instance). A detailed description of the problems considered is given in Montemanni et al. [9].
Ten instances are considered for each problem and information about the optimality gap are
summarized.

On the reference machine the computation times are negligible (the time required to compute
the robustness cost of the solution is not counted) for all the benchmarks considered. For this
reason computation times are not reported.

In Tables 1 and 2 we report, for each problem and for each algorithm considered, average and
standard deviation for the following indicator:

UB(a) — LBey

1
0 0B

(6)
where U B(a) indicates the robustness cost of the solution provided by the heuristic algorithm
a under investigation, and LB, is the best lower bound for the cost of the optimal robustness
solution available (see Montemanni et al. [9]). Indicator (6) provides then an upper bound for
the gap between the cost of the heuristic solution and that of the optimal one.

In the second column of Tables 1 and 2 it is indicated whether an optimal solution is available
for all the instances of each problem considered. Rows with entry No in the second column may
therefore overestimate the gap between the cost of the heuristic and that of an optimal one.

Notwithstanding the very short computation times required by the algorithms, the solutions
provided by methods HU and HM are of good quality. In particular, we conjecture that the
performance decay for the biggest problems most depends on the poor quality of the lower
bounds. If this is true, the quality of the heuristic solutions does not seem to be strictly related
to the dimension of the problems.

We can observe also that HU seems to perform better than HM, especially on the biggest
problems, for which the dominance is clear.

4.1.3 2-opt and 3-opt improving heuristics

Notwithstanding the difficulties connected with a repeate evaluation of robustness costs (that
might slow down the computation too much), it is interesting to measure how the solutions
returned by the heuristic methods described in Section 4 can be improved by applying classic
local search methods. We here consider 2-opt and 3-opt algorithms (see Lawler at al. [8]).

Starting from a feasible solution, 2-opt (3-opt) sequentially considers each possible pair (triple)
of nodes and evaluate the solution obtained by swapping some parts of the tour according to the
two (tree) nodes selected. Only improving swaps are accepted. The procedure is repeated until
a full iteration, during which all possible pairs (triples) are evaluated, is completed without any
improvement in the solution quality.

As seen before, the repeated evaluation of robustness costs can be a problem, since a single
robustness cost evaluation is already an NP-hard problem. For this reason, it is crucial to limit

"http://www.iwr.uni-heidelberg.de/groups/comopt /software/ TSPLIB95.
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Table 1: Heuristic algorithms. Random instances. Percentage deviations from best lower bounds
(6). Averages over 10 instances.

Problem Optimal | Algorithm HM | Algorithm HU
Avg  StDev | Avg StDev
R-~10-100 Yes 4.16 8.97 2.38 3.00

R-10-1000 Yes 6.96 7.61 4.28 5.57

R-20-100 Yes 3.51 5.14 1.48 2.37
R-20-1000 Yes 2.44 3.13 1.03 1.51
R-30-100 Yes 2.30 3.50 1.66 1.98
R-30-1000 Yes 3.06 2.95 1.03 1.35
R-40-100 Yes 3.99 3.32 1.02 0.98
R-40-1000 Yes 3.84 3.51 1.08 1.22
R-50-100 No 9.55 4.78 2.18 3.87
R-50-1000 Yes 4.87 2.22 1.11 1.19
R-60-100 No 6.33 4.26 3.41 2.82

R-60-1000 Yes 3.86 1.36 0.69 0.69
R-80-1000 No 3.77 1.46 1.39 1.44

R-30-10 Yes 3.37 2.75 0.49 1.03
R-30-10000 Yes 2.23 1.87 1.79 2.61
R-120-100 No 11.30 1.61 8.30 1.72
R-120-1000 No 12.54 2.93 9.71 2.07
R-240-100 No 13.21 1.92 9.32 1.49
R-240-1000 No 16.39 6.82 12.53  6.98
R-360-100 No 9.71 4.18 8.72 3.94
R-360-1000 No 15.68 1.45 12.74 1.16

the number of evaluations as much as possible. We therefore implemented optimized strategy
as described in Montemanni et al. [9].

Computational results (not reported here, but available in Montemanni et al. [9]) suggest that
the local search algorithms rarely improve the solutions provided by heuristic algorithm HU, and
even when this happens, the improvement is extremely marginal (less than 1% on average). It is
interesting to observe that the computation time required by the local search algorithm is strictly
related to the dimension of the problems (as expected), and is absolutely not negligible for the
largest problems considered. These results suggest that applying 2-opt and 3-opt methods to
the solutions provided by HU and HM might not be convenient.

5 Conclusion

Heuristic methods for the robust traveling salesman problem with interval data, where uncer-
tainty about edge costs is taken into account, have been studied and discussed in this paper.

The heuristic approaches proved to be extremely fast and to guarantee good approximations of
the optimal solutions.

A negative theoretical results about the approximability of the problem has been finally reported.
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