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Abstract

To change departure time is one of the most common respogsesr liravellers to
new network conditions. Yet there are few transportatiodet®taking departure time
choice into account. In this paper the project SILVESTERM3Lation of choice
betWEen Starting TimEs and Routes) is presented. Basedatedspreference and
revealed preference data on travel behaviour of driversank®olm, a departure time
and mode choice model has been estimated in a mixed logiefsank. In the second,
ongoing stage of the project the estimated model is impléeadeand connected to a
dynamic traffic assignment model. Through iterations betwtde departure time and
assignment model the objective is to forecast effects ofestion charges and infras-
tructure investments on departure time choice.

Keywords: congestion charges, departure time choice, mixed logitathic traffic
simulation

1 Introduction

1.1 Background

The expansion of big cities has the last decades led to admmasile increase in traffic.
More and more time is spent commuting and driving to leisgt&igies and shopping
centres. Often, part of this travel time is queueing timasThunfortunate, since time
is spent without any benefit for society. Queues are also dathé environment due
to an increase of emissions.

In Stockholm, a trial of congestion charges has recently loaeried out (January
3rd to July 31st, 2006) [2]. The aim of the trial was to evaduibtongestion charges
can reduce over-all traffic in the city-centre and also toifeemore efficient usage
of the transportation system can be achieved. Some roatieavdy congested in the
morning and afternoon peak hour, but there is scope for mafféctduring other parts
of the day. To achieve this desirpdak-spreading effecthe congestion charges were
time-of-day dependent and higher in the peak periods.

Capacity expansion of roads is a more common measure th@esiton charges.
Increased capacity has however an effect on travel demhedig@mand for travel in-
creases with larger capacity. For a heavily congested thadncreased travel demand
can outweigh the benefits of a capacity expansion. Furthernmeglecting the over-
all extra demand, a capacity expansion also attracts ttafflee peak hour since some
drivers switch back to their desired time of travel as traveés are reduced. Therefore,
to reduce congestion, charges might be a better alterrthivea capacity increase.



Some people will change their departure time to avoid clargkso in cities with-
out congestion charges, road-users are likely to depamestother than their preferred
departure time to avoid queues. There are however few tdmreand models taking
departure time choice into account. Even more rare is agujiics where a demand
model including departure time choice and a dynamic asségrirmodel interact to
predict how travellers react to new travel conditions.

1.2 Objective

This paper is part of the ongoing project SILVESTER (SImukabf choice betWEen
Starting TimEs and Routes). In the first stage of the projel&parture time and mode
choice model was estimated by Maria Borjesson in [3] basestated preference(SP)
andrevealed preference(RRjata on travel behaviour of drivers in Stockholm. The
objective of the second, ongoing stage is to implement théehand connect it to a
dynamic traffic assignment model. The contribution of treuteng application will be
its ability to forecast effects of congestion charges anad network expansions on
departure time choice. Since run times of the traffic assgrtmmodel are rather long
for the network of Stockholm, a main issue will be to achieskatively fast conver-
gence.

1.3 Related Projects

The travel demand forecasting tool in use in Sweden is cSRMPERS [1]. The tool
contains regional, long distance and international modedgraffic assignment model
Emme/2 is used both for car and public transport. On the ddrsate SAMPERS
contains models for car ownership, trip frequency, destinachoice and mode choice
divided by trip purpose. The long distance model also costaiodels for departure
time choice and ticket type choice. A regional model inchgddeparture time choice
that can forecast peak spreading effects is however natdedin SAMPERS.

Recently (final report May 2005) a transport model called$NRhas been devel-
oped for the West Midlands region [14]. The model is basechersbftware package
VISUM in which highway and public transport networks can begrated and which
has an interface to both GIS and the micro simulation mod&S. The network
included in the model is divided into an external, internag¢gliand internal area and
has a high level of zonal detail especially in the internélaur area (900 zones total
and 574 zones for internal area). For the highway assigninéme internal area every
junction is modelled and the demand side contain modelsdoownership, public
transport pass ownership, tour frequency, destinatioicehmode choice and time of
day choice. The demand models are discrete choice modetsaéstl on data from
home or road-side interviews. The time of day choice modkebigever rather coarse,
since the 24 hour modelled period is divided into only foundiperiods. Thus only
large time shifts are modelled, not any kind of peak spreadin

The Department for Transport in UK has developed a softwaliedt DIADEM
(Development of Integrated Assign and DEmand Models) [6% tonnects a variable
demand model with a traffic assignment model (either CONTR&NEATURN) and
iterate between the two to come close to an equilibrium. DEAMDaccounts for alter-
ations in demand due to changes in choice of frequency,nd¢isth, mode and time
of day. For time of day choice the choice between broader figr@ds (typically a
couple of hours) can be modelled as part of an increment&aésgit model. There



is however no model in DIADEM especially developed for cleoietween short time
periods (fifteen minutes or less).

A project called HADES (Heterogeneous Arrival and Depattimes based on
Equilibrium Scheduling) has focused on peak spreading [IBje approach used in
HADES was not based on discrete choice modelling, but onectdéequilibration of
demand and supply called equilibrium scheduling theoryT)E8/hich follows the
work of Vickrey [15]. An advantage of EST is that the demandfibe is continuous
over time, hence is not dependent of any division into tinéopks. The conclusion of
HADES was however that future peak spreading models shaulshsed on discrete
choice methods since the EST implementation faced probieithsinconsistencies
between travel time gradients at the demand and supply side.

All projects described above except the PRISM project apettased. The argu-
ment against the traditional trip-based modelling is thattip in it self does not derive
demand, instead it is the activity at the destination thevd@emand for travel. For the
network of Portland, Oregon an activity-based model wagldged during 1996 and
1997 [4]. The model start with determining a persons agtpéttern given household
and person variables. The activity pattern is a tour from &édona primary destina-
tion and back home again with possible intermediate stdpstiveen. Departure time
choice is included in the Portland model, but there are onéytfime periods during the
whole day and no variables that capture schedule flexitailigyincluded.

2 Modéling Departure Time Choice

2.1 Step Five

Traditionally, the urban transportation model is callddar-step modelsince it mod-
els travel behaviour in four steps: trip generation, triptddbution, mode and route
choice. The model discussed in this paper deals with a fifth, stamely departure
time choice. This step describes the time-of-day dimenefanavel behaviour and
models the re-timing of journeys due to altered travel ctiowis.

Incremental changes in trip generation and distributiomfthe base scenario are
not considered in the SILVESTER model. The model shouldetioee be used to
forecast short-term projects, where the influence of chaimgiip generation and dis-
tribution are small and the most common reactions from thaeetters are to change
route, departure time or mode. The mode choice is in the SBMER model included
as the option to switcto public transporfrom car.

2.2 Mode Formulation

The departure time choice model was estimated with the softBiogeme using both
SP and RP data. After careful examination of the data, thellptipn was segmented
into three groups with respect to schedule flexibility andigaf time:

1. commuters with flexible schedule and other trips,

2. commuters with fixed schedule and school trips,

3. business trips.



The representative utility for flexible commuters is:

Ucart = PB1SDE +biSDE73Q + B2SDL; + BaZ; +boTe +bzoy +&, (1)
Cp1 + baTpr + bsSeasonTicket n + €pr,

Upt

wheret = 1,...,14 is index of time period. The number of time intervals comoarf a
division of the extended morning peak (6:30-9:30) into txegime slices, each fifteen
minutes long, plus one time period before and one after theneled morning peak.
There are thus fifteen choices: to go by car and start in orteedbiurteen time periods
or to go by public transport. The utility function punishegeparture time (DT) differ-
ent from thepreferred departure time (PDTthrough the variableschedule deviation
early (SDE}andschedule deviation late (SDL)

SDE = maxPDT-DT,0), )
SDL = maxDT;,—PDT,0).

The other variables areSDE730 - a dummy variable which is 1 if the trip starts in a
time interval before 7:30 anZ - congestion charges, - car travel duration timeg

- car travel time uncertaintylpt - public transport travel durations (public transport
travel durations are not time slice dependeB®asonTicketa dummy variable which
is 1 if the car user also has a season ticket for public tramgpaCpt - an alternative
specific constant for the public transport alternative.

The parameter for public transport cost (i.e. ticket cosiswot significant in
estimation of the model. One reason for this is that costghliicorrelated with travel
time in the public transport alternative.

Parameters labeldgidiffer in the population, i.e. not all individuals have thense
preferences. These parameters are characterized by ibutietn with a mean and
a standard deviation. Araw from the distribution represents an individual of the
population. By assuming ramdom parameters for the scheldwiation variables the
desired larger correlation between adjacent time intsrigahccomplished.

The error componentsare independent and identically distributed Gumbel terms,
whereaq) is normally distributedn induces a larger variance in the choice between
car and public transport than between two car alternatiVhss is similar to dividing
the alternatives into different nests, as is done in a ndstgdmodel.

The utility functions for commuters with fixed working howsd for business trips
look almost the same as Eg.1, except that for commuters widl fivorking hours
the extra disutility of early departure is before 7:00 ang for business trips only a
handful of respondents chose the public transport altemandUpt was therefore
excluded. Of course, the values of the estimated paramatsygiffer between the
three segments.

2.3 Mixed Logit

The departure time model is implemented im&ed logitframework. Similarly to the
multinomial logit the mixed logit model determines probabilities for chatearious
alternatives, in our case the departure time intervals)E{ylixed logit models contain

1The common term ischedule delay early (lateput in this papedeviationwill be used instead afelay
sincedelayis a misleading word. SDE does not imply a delay, it impliepaténg or arriving earlier than
what you prefer under ideal, free-flow, conditions. The epts SDE and SDL thus deal with deviation not
delay.



integrals that can not be solved analytically, i.e. no aidsem exists. The integrals are
instead solved through simulation. Simulation may reqlang run times depending
on number of draws. This problem is however diminishing wiita faster computers

available today.
Po= [ (s )t ©
a = X)dx
Y 6%

whereV, is the representative utility of alternatiee i.e. the utility function in Eq.1
but without gumbel terms, anfix) is a mixing distribution. It is common to use the
normal distribution as mixing distribution, since it is gde implement. It is however
symmetric and allows positive values, which is unsuitabletfavel cost parameters.
Instead Johnson'sgSistribution is used in this project. Johnsonis @stribution has
rarely been used in demand modelling before. Also rare isiieeof mixed logit for
forcasting purposes.

An alternative to the mixed logit model could be to use an OGhdtel. The
OGEV model is suitable for choice of departure time sincdldves the alternatives to
be ordered and the closer the alternatives are the largeotinelation between them
is. One benefit of the OGEV model is that a closed form exists fimulation is
not required. The SP data used when estimating the SILVESh&éRe! include sev-
eral answers from the same respondent. It proved to be iaptcd assume that, for
the same individual, unobserved factors affecting depatime choice are correlated.
This correlation could not be taken into account with a mddwh the GEV-family
and an OGEV model could thus not be used.

For further reading on mixed logit models see Chapter 6 ih [10

3 Implementation

3.1 Equilibrium Between Demand and Supply

The model for departure time choice (Sec.2.2) is connectexhtassignment model
(Sec.3.3) and changes in departure times are calculataditerative procedure. An
overview of the iterative process is shown in Fig.1.

The iterations between demand and supply are controlledvyrétoring program that
skims and saves data and evaluates a convergence critdifi@naim is to approach
equilibrium between demand and supply. To further illusttzow the simulation pro-
gram works the different steps are shown in a flowchart (fig.2

3.2 Departure Time Model I mplementation

Both the monitoring program and the departure time choicdehis implemented in
Matlab.

I nput

In order to calculate the probabilities for choosing thdedént time periods and the
public transport alternative we need to know the variablelided in the representative
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Figure 1: Schematic figure of departure time-assignmeataction.

utility functions (Eq.1). Once the preferred departurestinare known, the size of the
schedule deviation variables are given. The variable fdy ekeparture is determined
by time period only. The season ticket variable is deterchfnem a large travel survey
carried out before and during the Stockholm trial [5], as thto of car travellers
who also possess a season ticket. Public transport travaticlus are constant over
demand-supply iterations and are given from the Emme/2iptiansport model for
Stockholm. Car travel durations and tolls are on the othedtskimmed from the
assignment model after each demand-supply iteration.

Output from the assignment model are travel durations afsifto routes These
are converted to OD-level:

alTI']_t + + GRTrRt Zd o alzrlt + + GRZrRt (4)
) ct — )

R R

where route, ..., rr are the routes used by vehicles belonging to OD-@aind user
classc, anda; is the ratio of vehicles choosing route

Remaining is the travel time uncertainty. This is the vdgakhich is the hardest
to get a hold of. Recently camera measurements of travestivaee been made for a
number of stretches in Stockholm, which has made it posild@stimate a relationship
betweerlink travel time uncertainty and travel duration and length eflthk [11]:

O — e 1.92+0086Late+0.24Speedq Ti? | T 1 5)
| = A A - .
t LP3\ Tery

Lateis a dummy for entering the link after 8:38peed( is a dummy for links with
speed limit 70km/hT; is the travel duration of link in time periodt, L, is the length
of link | andTgg) is the free flow duration of link. Using this relationship the travel

Td ct—
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Figure 2: Flowchart of the whole simulation procedure.

time uncertainty is close to zero for uncongested situatigravel durations close to
free flow durations) and grows §$-7 for heavily congested situations (travel durations
> free flow durations).

The same report [11] also argues that the fault made whemasgthat link travel
times are uncorrelated is acceptable. In order to get ttaaeluncertainties for routes
we thus assume that the link travel times are uncorrelatbd.ufcertainty for route
in time periodt can then be calculated as:

Ot =1/ Of4 + ... +0f (6)

wherely,...,I| are the links used by route The travel time uncertainty is then con-
verted to uncertainty for a certain OD-pair and user clagsérsame way as for travel
durations and tolls (Eq.4).

Output

Each of the three departure time models calculate fifteebahitity matricesP1 to
P15. Elementdc,y) in P1 contains the probability of choosing to depart before 6:30
am, given OD-paid, user class and preferred departure time interyaP15 contains
the probabilities for the public transport alternative.

In the assignment model there are twelve time periods betvdeg0-9:30 each
fifteen minutes long. The first and last time period in the deepa time choice model
should thus be interpreted as before and after the peak ioadér sense than just



fifteen minutes. Rowdc of the demand matrig,, is calculated as:

14 14
dec: Z (Pzpdcprdcy)7 ey Z(P13pdcprdcy)
y=1 y=

whereYpgcy is @ matrix containing, for each OD-paiy user class and segmenp,
the number otars per hourthat has time slicg as preferred departure time interval.
Before demand is sent to assignment summation is done avéhnbe segments:

Q: ZQp

3.3 Assignment Model

The dynamic route choice model CONTRAM will be used as ass&mt model [8].
The assignment model needs to be dynamic, since duratiortrgd that departs in
some time interval may depend on traffic conditions in aneaok later time interval.
CONTRAM is amesoscopic modeli.e. intermediate betweanacroscopiandmi-
croscopic It combines a macroscopic model that describes the netstat& through
aggregate quantities such as average arrival rate on a lthkanmicroscopic model
that routes packets through a detailed network in whicHi¢rafgnals, roundabouts,
etc. are coded.

A packet consists of demand that have the same origin anahdtsh, belong to
the same user class and start in the same time period. Allrmaone packet will
use the same route. Since the best route for one packet depetildws on the links,
i.e. decisions of other packets, the process of assignicigpato the network must be
repeated in order to approach a user equilibrium.

In each iteration in CONTRAM several convergence measuresaculated:

RMS = \/LT lel Qlitk — Clitk—1)? (7)

AAD = — — _
T ZZMW Qlitk—1/
100 & O |Gtk — Qi1

T lel Qitk—1

whereq is flow on link | in time periodt and iterationk. The available stability
criteria are in the order listed in Eqg.7: route mean squasngh & 5vel/h), aver-
age absolute difference:(lvehy/h) and percentage relative average absolute difference
(< 1%). Also supplied is the percentage of links whose flows gkavith less than five
percent & 95%). Minimum requirements for convergence are given mbicckets.
CONTRAM includes time-dependent queuing methods to rézdiy model the
build up and dissipation of queues. The queues start at dipdise of a junction and
build up vertically. So called blocking back effects are mlbel by comparing the
length of the queue with the storage capacity of the link. W8@% of the link storage
capacity is reached, CONTRAM reduces the throughput capaidine upstream links.
The queuing model is thus relatively advanced. One thingéischot handle though is
shock waves. This means that in the model there is a free gpdlce upstream node

%AAD



of the link exactly when a packet leaves the downstream netlereas in reality the
free space moves backwards like a wave and it takes some #foeelit reaches the
entrance of the link.

Input to CONTRAM is a network with appropriate charactécstand a demand
matrix (Q). For the CONTRAM network, without the departure time cleoicodel, a
demand matrix has been estimated using traffic counts. Thergksed cost function
used during this estimation was:

Gijtc = 60Tijic + 0.5Dijtc + Zijtc, (8)

whereT is travel duration time distance and congestion charge& was zero during
this matrix estimation, since the demand matrix was céaiiorfor the situation without
charges.

4 Performanceand Run Time

For an application to be user-friendly the run time shoulshbebe much longer than
fifteen hours (it is then possible to start a simulation ruthatend of the day and it
will be finished when you come back next morning). With a iestn on the run time
we want to achieve best performance possible. There areasdsetors that affect
performance, e.g. the number ddD-pairs, user classes, draws in the mixed logit
model, iterations in CONTRAMnNditerations between demand and supphcreasing
any of these factors will (presumably) make the applicatesults more accurate, but
it will also increase the run time. The different factorslwié described further below.

4.1 Reducing Number of OD-pairsUsing the Fratar Method

The original demand matrix consists of 90770 OD-pairs. Weiy large OD-matrix
givesrise to long run times in CONTRAM (about 8 hours for seiterations). Further-
more this is just for one user class. If we want to have more ciasses (see Sec.4.2
to why we want that) all OD-pairs will be counted one time fack class.

The monitoring program also has a run time which is depenglentimber of OD-
pairs. This is because of the calculation of travel time utadaty for each OD-pair. For
15970 OD-pairs this run time is 15.6 minutes, but just as ONTRAM, the increase
in run time due to more OD-pairs is faster than linear.

There is thus a lot to gain in run time by reducing number of @firs. Many of
the entries in the demand matrix are very small and with aivelst small threshold
OD-pairs can be removed while still keeping most of the des{@ab.1).

One must however be careful to remove the small entries awgl toaspread out the
removed demand in a clever way, since many links have a flowaeeittributions from
many small demand sources. There is otherwise a risk thse fhviks get zero flow. It
is also important to check that the trip distance distritrutiemains approximately the
same.

First one method is tested in which OD-pairs are removedfl@mdemand spread
out by multiplying the whole matrix by number such that theatmumber of trips is
still the same as before the reduction. That is, we use a mmifpowth factor and
apply it to all elements in the OD-matrix. This method turreed not to be so good,
since trip origins and destinations move from zones in theiiity with little demand
to zones in the outer city with large demand. This will thuarede trips from short to
long and move traffic from small inner city streets to highaay



Trip Threshold| # Active OD-pairs| Percent of Trips Removed
0,2 70531 0,7
0,5 50637 3,2
1 35120 7.3
2 21906 14,3
3 15970 19.8
4 12400 24,4
5 10010 28.4

Table 1: OD-pairs with number of trips starting during theokghmorning period less
than the trip threshold are removed.

Instead we use the Fratar-method to adjust the new matroh #hat origin and
destination sums will coincide almost with the original enélhis is the method of
doubly constrained growth factors. The procedure is iteand either the row or the
column sums can meet their target perfectly, at the sameasibe other one is kept
close to the target. We choose to meet column sum targetsagplgrénd to keep row
sums within 1% of their target values.

The reduction of OD-pairs will sometimes result in that ripdistart and/or end in
some zones. For link flows that are made up of demand from thamses the Fratar
method does not help. These zones should therefore be as fevgsible. Tab.2 shows
the number of times demand from or to a zone has become zemdaftnand have
been spread out using the Fratar method, this for differemtirer of active OD-pairs.
In brackets are the total demand (in number of trips) diswgrhwhen the start/end
zones become zero.

fActive OD-pairs| f start zones (trips) # end zones (trips)

70531 0 (0) 0(0)

50637 2 (3.0) 2(5.2)
35120 3(18.0) 2(5.2)
21906 4(41.2) 3(11.2)
15970 5 (45.6) 5(58.7)
12400 10 (263.2) 6 (147.0)
10010 19 (944.2) 7(193.1)

Table 2: Number of zones with zero trips starting and endagpectively. Affected
fitrips in brackets.

With the Fratar method, as opposed to the uniform growth atktthe total number
of trips is not exactly reproduced. The total number of tiipghe original matrix
was 267497. Using the Fratar method the total number of wipslecrease with the
number of trips disregarded at the end zones, this since wedimsen to meet the trip
end targets exactly (except for the disregarded demand).

4.2 User Classes Depending on Value of Time

If there are several routes from an origin to a destinatiahtaey have similar costs,
then demand for travel will split between these routes. Ipstesn with no congestion
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charges this does notimply any problems. Since the routgseaiceived almost equally
good to the drivers, the travel times are also very similah&a can use a mean value
of the route travel times as travel time for that OD-pair ia teparture time model.

However, if charges are added to the system the situaticonbes a little bit more
tricky. The generalised cost for route choice (Eq.8) stil$ labout the same value for
all used routes, but the travel duration times do not have tsitilar anymore. On the
contrary, the situation can be one where some drivers cteosate which is free but
has a long travel time, whereas some choose a tolled bubiatgt.rThe choice of route
thus depends on each drivers value of time (VOT). To use a wedar of route travel
times would in this situation be a coarse calculation.

Instead the three departure time models (flex, fixed and éss)rare modified such
that they calculate probabilities to start in a certain tpeeod depending on user class.
Since the cost parameter differs in the population, eacl éh@m the cost parameter
distribution belongs to a user class depending on its vdltiene:

VOT = eob—ﬁ, 9)
3

whereb is the deterministic coeffient for travel time aflis a draw from the distri-
bution for the cost parameter. Multiplication by 60 is doogét VOT per hour instead
of per minute. The distribution of value of time is shown igB. The draws can be

Al trip purposes combined
T T T

Figure 3: Value of time distribution for the three segmemisbined.

seen as representing different individuals. In the iteregibetween demand and sup-
ply an equilibrium should be sought with respect to the samdé/iduals. We should
therefore not generate new random numbdnsdividuals) in each iteration, rather the
random numbers of the first iteration need to be used in cogpitérations.

2These are pseudo random numbers generated with the comandndin Matlab and transformed from
the normal distribution tdohnsofs S distribution.
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There are a portion of the population with very high valueimit who in this case
can be said to be price insensitive: they will not change dapatime or mode for
any of the amounts in question for a congestion charge. mrtant to capture this
by having atleast two user classes. Otherwise the mear tiaeeand mean toll for a
cheap but slow route and a tolled but fast route will be a @mapproximation to the
network conditions for vehicles travelling from a certanigin to a certain destination.
The benefit of more than two user classes is more uncertain.

4.3 Drawsinthe Simulated Mixed Logit M odel

As mentioned in Sec.2.3 the departure time choice modelledés choice probabil-
ities through simulation and the more draws the more aceutst result becomes.
However, run times of the departure time choice model irsgeéth number of draws
(Tab.3 and Fig.4) and a trade off between accuracy and spetbibe made. The
simulations are run on a Dual 3.0 GHz Intel Pentium 4 with 18EBmemory.

Number of Draws

Run Time (min)

10
30
50
70

0.72
1.82
2.92
4.01

Least squares appro

.t=0.055-d+0.18

Table 3: Departure time choice model run times for differanmber of draws.
Commuters with flexible schedule and other trips.

As can be seen from Fig.4 the increase in run time is lineaw ldag the run time
is for a given number of draws is determined by number of OPspwhich here was
15970 (one user class with 15970 OD-pairs, i.e. the tripsthotl of three trips during
the whole morning was used). The models for the three groulpsiave to be run
one after the other, thus approximately trebling the ruretirior the business group
the run time is somewhat shorter since this model does nltdathe public transport
alternative.

4.4 lterationsin CONTRAM and lterations Between Demand and

Supply

Iterations in CONTRAM are performed to approach a user éxguiim. For each itera-
tion the convergence measures of Sec.3.3 improve, but ealiiomal iteration implies
additional run time. The same goes for iterations betweemathel and supply. The lat-
ter is also dependent on CONTRAM convergence, since thacapiph will presum-
ably approach a demand-supply equilibrium faster if theeahoice has converged
reasonably well.
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Run time of the model for flexible commuters and other trips for different number of draws
5 T T T T T

451

35

t=0.0550+0.18|

15

05

40
Number of draws

Figure 4: Linear dependence between runtime and humbenafdr

45 Performance Criterion

We will decide how many user classes, draws in the depaiitagerhodels, iterations
in CONTRAM and iterations between demand and supply to useodbyparing the
effects of different parameter settings on resulting penmce, which we measure by
Eq.10:

Zijtc Qiljtp |Ci']"‘tp - Ciljtp|
2ijtp Qiljtpciljtp
wherel is an "ideal” case in which all parameters take on their higlvalues (Tab.4)

andA is an approximate case under evaluation. Eq.11 shows thiessipn we use for
generalised cost:

E = 100

, (10)

Ciitn — BYSDEjtp -+ b)SDE730)tp + BESDLijtp + B5Zitp + b Tijtp + bty
jtp — [9) ’
Bs

where mean values are used for the random paranf&tdise generalised cost is thus
not dependent on user class, which is important since we toavialuate the effect of
different number of user classes.

From the ideal run we get a reference valileo aim towards. Its very important
that this ideal run has converged properly and it is posshdewe will continue the
demand-supply iterations above the highest value (12)ywWemence it not satisfactory.

(11)

First an approximation where all parameters take on theiesb values is evaluated
and then the parameters are varied one at the time to captinefluence of a certain
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Parameter | Lowest Value| Highest Value

gUser Classes 2 5
gDraws 20 200
flterations in CONTRAM 6 10
flterations in D/S 4 12

Table 4: Parameter settings

parameter on resulting performance. For all runs the vatug and the run time will
be noted down.

5 Convergence

In the end, the purpose of the application developed in tttgpt is to calculate socio-
economic benefits of congestion charges or road investmikisg departure time
choice into account. One measure of consumer surplus chi@gyr compared to a do
nothing scenario is the so calledle-of-a-half® [7]:

1 _|_Q2
ijtp T Nijtp
AS = IZ (Cilitp _Cizjtp) (—2) +.Z Zijtp, (12)
tp itp

whereC! is generalised cost in the do nothing scena@i®js generalised cost in the
scenario with congestion charges ahis amount of collected charges. The collected
amount need to be added since it can be used for purposesdierefsociety.

As a measure of closeness to convergence during a simutaitioof our program
there are several candidates:

Yijtp Cijtp k| Qijtp.k — Qijtp k-1

ely = 100 or (13)
Yijtp Cijtp kQijtp k-1

2 — 100 Yijtp Quitp Kl Ciitpk — Cijtp a1l
Zijthijtp,kCijtp,kfl

&3 — 100 ZijtpQijtp-,k(cijtp,k_Cijtp,k—l)z.

Yijtp Qijtpk(Cijtp k—1)?

All three measures are in percent. In DIADEM s used and it is called the percentage
demand/supply gap (&AP). Recommended level for convergence is a value G*¥R
which is less than 0.2%. Also recommended is that the conssumplus, expressed
as percentage of total network costs, should be more thaintes larger than BAP
[12].

The measureg2 ande3 are however more similar to the expression for consumer
surplus (Eg.12). As a measure of how close the simulation édtvergence we will
therefore use2. The generalised co6tin Eq.13 is the same as in Eq.11.

In order to reach convergence in a reasonable number ofidtiesassome form of
damping, in which the present solution from assignmentishiaed with the solution
of the previous iteration, is needed. The previous solutiecomes more and more

3In future benefit assessments we will have to evaluate if mafisticated methods than the rule-of-a-half
shall be used.
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trustworthy for each iteration. A common way to combine thie solutions is therefore
themethod of successive avera@BkSA):

Tk = fk-}\k-l—Tk,l- (1—M\y), (14)
Zc = Zx-M+Zer-(1—MN),
Ok = Ok-Ac+0k-1-(1—MAy),

1

There are other damping algorithms as well, but to evalldsmtis a whole project
in its own. MSA is the most established method and will therefbe used in this
implementation.

6 Conclusions

One question important to this paper is whether to model diggaor arrival time.
Since the respondents choose departure time on the bagdigiopteferred arrival
time(PAT)one could argue the PAT should be used instead of PDT. Thieviever
most important to travellers with fixed working hours, whisha small group in our
sample. In addition, when travel time is uncertain, thedHavs can not choose arrival
time, only departure time. Modelling departure time is asasier from an implemen-
tation perspective, since the assignment model CONTRAMgalemand partitioned
into departure time intervals as input. We have on the bdswhat has been said above
chosen to model departure time. The PDT:s will have to besaeljlif travel durations
change a lot, this to preserve the PAT-distribution.

In Sec.4.1 we saw that if we remove OD-pairs with very littenthnd and raise
the remaining matrix with a percent such that total demarnidéssame, then demand
is shifted from inner city start and end zones to start andzemés in the outer region.
Thus, traffic is transfered from small inner city streetsamgé approach roads. We
therefore conclude that the uniform growth method does mokwell in this case and
the Fratar method shall be used instead, which proved to wellk

When congestion charges are added to the network we cannth@isame mean
travel duration for everybody anymore, since the travehtlans are no longer simi-
lar. We thus conclude that more than one user class is nedtlbath user class an
individual (draw) belongs to depends on its value of time.

From Tab.3 one can conclude that the implementation of thartigre time choice
model is fast enough. The increase in run time due to moresdiswWnear. Since
CONTRAM does not calculate travel time uncertainty, we hiaMeuild an own model
and calculate the uncertainty before it is sent to the dapatime choice model. This
travel time uncertainty calculation is heavily dependenhomber of OD-pairs and the
run time can become crusial for large OD-matrices and/onytiare value classes.

7 FutureWork
7.1 ldeal Starting Times

In Sec.3.2 it was not explained how to calculate the matrpreferred departure times
Y. For a congested situation they cannot be observed, sinc@dt certain that they
are equal to actual starting times. Another option wouldobesk travellers about their
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preferredtime of travel, but this kind of survey is both exgige and unreliable. Instead
the PDT:s will be estimated using a reverse engineeringoagpr The approach is
described for one OD-pair in [9]. In this project the revezagineering approach will

be applied to the whole network of Stockholm. The applicatbreverse engineering
to so many OD-pairs has not been done before.

The reverse engineering idea is as follows: for a base soamse observed number
of departures in each time period together with a departore model (for example
the one described in this paper) and calculate ideal stgtitimes "backwards”. The
ideal starting times can be revealed from the observed anes the departure time
model contains information on how travellers trade-offélaime and deviation from
ideal starting time. The next step is to use the ideal sttimes in order to calculate
actual starting times in an updated scenario, for exampdenith congestion charges
added to the base situation.
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Nomenclature

Variable |

Description

OWNO TSm0 OO T

SDE/SDL

<CHaqa

Deterministic coefficients

Random coefficients

Generalised cost

Distance

Deviation between iterations

Unobservable part of utility, Gumbel distributed
Unobservable part of utility, Normally distributed
Probability

Traffic flow matrix (demand matrix)

Toll (congestion charge)
Socio-economic-benefit

Schedule deviation early/late

Travel time uncertainty

Travel duration time

Random utility

Observable part of utility

Table 5: Description of Variables

Index | Description

alternative

a certain alternative
class

origin

destination

iteration

link

OD-pair

decision maker

trip purpose

route

scenario

time interval
preferred time interval

N ST S AQA—X——0 9O

<

Table 6: Description of Indices
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