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Abstract

To change departure time is one of the most common responses by car travellers to
new network conditions. Yet there are few transportation models taking departure time
choice into account. In this paper the project SILVESTER (SImuLation of choice
betWEen Starting TimEs and Routes) is presented. Based on stated preference and
revealed preference data on travel behaviour of drivers in Stockholm, a departure time
and mode choice model has been estimated in a mixed logit framework. In the second,
ongoing stage of the project the estimated model is implemented and connected to a
dynamic traffic assignment model. Through iterations between the departure time and
assignment model the objective is to forecast effects of congestion charges and infras-
tructure investments on departure time choice.

Keywords: congestion charges, departure time choice, mixed logit, dynamic traffic
simulation

1 Introduction

1.1 Background

The expansion of big cities has the last decades led to a considerable increase in traffic.
More and more time is spent commuting and driving to leisure activities and shopping
centres. Often, part of this travel time is queueing time. This is unfortunate, since time
is spent without any benefit for society. Queues are also bad for the environment due
to an increase of emissions.

In Stockholm, a trial of congestion charges has recently been carried out (January
3rd to July 31st, 2006) [2]. The aim of the trial was to evaluate if congestion charges
can reduce over-all traffic in the city-centre and also to seeif a more efficient usage
of the transportation system can be achieved. Some roads areheavily congested in the
morning and afternoon peak hour, but there is scope for more traffic during other parts
of the day. To achieve this desiredpeak-spreading effect, the congestion charges were
time-of-day dependent and higher in the peak periods.

Capacity expansion of roads is a more common measure than congestion charges.
Increased capacity has however an effect on travel demand: the demand for travel in-
creases with larger capacity. For a heavily congested road,the increased travel demand
can outweigh the benefits of a capacity expansion. Furthermore, neglecting the over-
all extra demand, a capacity expansion also attracts trafficto the peak hour since some
drivers switch back to their desired time of travel as traveltimes are reduced. Therefore,
to reduce congestion, charges might be a better alternativethan a capacity increase.
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Some people will change their departure time to avoid charges. Also in cities with-
out congestion charges, road-users are likely to depart at times other than their preferred
departure time to avoid queues. There are however few traveldemand models taking
departure time choice into account. Even more rare is applications where a demand
model including departure time choice and a dynamic assignment model interact to
predict how travellers react to new travel conditions.

1.2 Objective

This paper is part of the ongoing project SILVESTER (SImuLation of choice betWEen
Starting TimEs and Routes). In the first stage of the project adeparture time and mode
choice model was estimated by Maria Börjesson in [3] based on stated preference(SP)
and revealed preference(RP)data on travel behaviour of drivers in Stockholm. The
objective of the second, ongoing stage is to implement the model and connect it to a
dynamic traffic assignment model. The contribution of the resulting application will be
its ability to forecast effects of congestion charges and/or road network expansions on
departure time choice. Since run times of the traffic assignment model are rather long
for the network of Stockholm, a main issue will be to achieve relatively fast conver-
gence.

1.3 Related Projects

The travel demand forecasting tool in use in Sweden is calledSAMPERS [1]. The tool
contains regional, long distance and international models. As traffic assignment model
Emme/2 is used both for car and public transport. On the demand side SAMPERS
contains models for car ownership, trip frequency, destination choice and mode choice
divided by trip purpose. The long distance model also contains models for departure
time choice and ticket type choice. A regional model including departure time choice
that can forecast peak spreading effects is however not included in SAMPERS.

Recently (final report May 2005) a transport model called PRISM has been devel-
oped for the West Midlands region [14]. The model is based on the software package
VISUM in which highway and public transport networks can be integrated and which
has an interface to both GIS and the micro simulation model VISSIM. The network
included in the model is divided into an external, intermediate and internal area and
has a high level of zonal detail especially in the internal urban area (900 zones total
and 574 zones for internal area). For the highway assignmentin the internal area every
junction is modelled and the demand side contain models for car ownership, public
transport pass ownership, tour frequency, destination choice, mode choice and time of
day choice. The demand models are discrete choice models estimated on data from
home or road-side interviews. The time of day choice model ishowever rather coarse,
since the 24 hour modelled period is divided into only four time periods. Thus only
large time shifts are modelled, not any kind of peak spreading.

The Department for Transport in UK has developed a software called DIADEM
(Development of Integrated Assign and DEmand Models) [6] that connects a variable
demand model with a traffic assignment model (either CONTRAMor SATURN) and
iterate between the two to come close to an equilibrium. DIADEM accounts for alter-
ations in demand due to changes in choice of frequency, destination, mode and time
of day. For time of day choice the choice between broader timeperiods (typically a
couple of hours) can be modelled as part of an incremental nested logit model. There
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is however no model in DIADEM especially developed for choice between short time
periods (fifteen minutes or less).

A project called HADES (Heterogeneous Arrival and Departure times based on
Equilibrium Scheduling) has focused on peak spreading [13]. The approach used in
HADES was not based on discrete choice modelling, but on a direct equilibration of
demand and supply called equilibrium scheduling theory (EST), which follows the
work of Vickrey [15]. An advantage of EST is that the demand profile is continuous
over time, hence is not dependent of any division into time periods. The conclusion of
HADES was however that future peak spreading models should be based on discrete
choice methods since the EST implementation faced problemswith inconsistencies
between travel time gradients at the demand and supply side.

All projects described above except the PRISM project are trip-based. The argu-
ment against the traditional trip-based modelling is that the trip in it self does not derive
demand, instead it is the activity at the destination that derive demand for travel. For the
network of Portland, Oregon an activity-based model was developed during 1996 and
1997 [4]. The model start with determining a persons activity pattern given household
and person variables. The activity pattern is a tour from home to a primary destina-
tion and back home again with possible intermediate stops inbetween. Departure time
choice is included in the Portland model, but there are only five time periods during the
whole day and no variables that capture schedule flexibilityare included.

2 Modelling Departure Time Choice

2.1 Step Five

Traditionally, the urban transportation model is called afour-step model, since it mod-
els travel behaviour in four steps: trip generation, trip distribution, mode and route
choice. The model discussed in this paper deals with a fifth step, namely departure
time choice. This step describes the time-of-day dimensionof travel behaviour and
models the re-timing of journeys due to altered travel conditions.

Incremental changes in trip generation and distribution from the base scenario are
not considered in the SILVESTER model. The model should therefore be used to
forecast short-term projects, where the influence of changes in trip generation and dis-
tribution are small and the most common reactions from the travellers are to change
route, departure time or mode. The mode choice is in the SILVESTER model included
as the option to switchto public transportfrom car.

2.2 Model Formulation

The departure time choice model was estimated with the software Biogeme using both
SP and RP data. After careful examination of the data, the population was segmented
into three groups with respect to schedule flexibility and value of time:

1. commuters with flexible schedule and other trips,

2. commuters with fixed schedule and school trips,

3. business trips.
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The representative utility for flexible commuters is:

UCAR,t = β1SDEt +b1SDE730t + β2SDLt + β3Zt +b2Tt +b3σt + εt , (1)

UPT = CPT +b4TPT +b5SeasonTicket+ η+ εPT,

wheret = 1, ...,14 is index of time period. The number of time intervals come from a
division of the extended morning peak (6:30-9:30) into twelve time slices, each fifteen
minutes long, plus one time period before and one after the extended morning peak.
There are thus fifteen choices: to go by car and start in one of the fourteen time periods
or to go by public transport. The utility function punishes adeparture time (DT) differ-
ent from thepreferred departure time (PDT)through the variablesschedule deviation
early (SDE)1andschedule deviation late (SDL):

SDEt = max(PDT−DTt ,0), (2)

SDLt = max(DTt −PDT,0).

The other variables are:SDE730 - a dummy variable which is 1 if the trip starts in a
time interval before 7:30 am,Z - congestion charges,T - car travel duration time,σ
- car travel time uncertainty,TPT - public transport travel durations (public transport
travel durations are not time slice dependent),SeasonTicket- a dummy variable which
is 1 if the car user also has a season ticket for public transport andCPT - an alternative
specific constant for the public transport alternative.

The parameter for public transport cost (i.e. ticket cost) was not significant in
estimation of the model. One reason for this is that cost is highly correlated with travel
time in the public transport alternative.

Parameters labeledβ differ in the population, i.e. not all individuals have the same
preferences. These parameters are characterized by a distribution with a mean and
a standard deviation. Adraw from the distribution represents an individual of the
population. By assuming ramdom parameters for the scheduledeviation variables the
desired larger correlation between adjacent time intervals is accomplished.

The error componentsε are independent and identically distributed Gumbel terms,
whereasη is normally distributed.η induces a larger variance in the choice between
car and public transport than between two car alternatives.This is similar to dividing
the alternatives into different nests, as is done in a nestedlogit model.

The utility functions for commuters with fixed working hoursand for business trips
look almost the same as Eq.1, except that for commuters with fixed working hours
the extra disutility of early departure is before 7:00 am, and for business trips only a
handful of respondents chose the public transport alternative andUPT was therefore
excluded. Of course, the values of the estimated parametersalso differ between the
three segments.

2.3 Mixed Logit

The departure time model is implemented in amixed logitframework. Similarly to the
multinomial logit, the mixed logit model determines probabilities for choiceof various
alternatives, in our case the departure time intervals (Eq.3). Mixed logit models contain

1The common term isschedule delay early (late), but in this paperdeviationwill be used instead ofdelay
sincedelay is a misleading word. SDE does not imply a delay, it implies departing or arriving earlier than
what you prefer under ideal, free-flow, conditions. The concepts SDE and SDL thus deal with deviation not
delay.
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integrals that can not be solved analytically, i.e. no closed form exists. The integrals are
instead solved through simulation. Simulation may requirelong run times depending
on number of draws. This problem is however diminishing withthe faster computers
available today.

Pâ =

Z (

eVâ

∑15
a=1eVa

)

f (x)dx, (3)

whereVa is the representative utility of alternativea, i.e. the utility function in Eq.1
but without gumbel terms, andf (x) is a mixing distribution. It is common to use the
normal distribution as mixing distribution, since it is easy to implement. It is however
symmetric and allows positive values, which is unsuitable for travel cost parameters.
Instead Johnson’s SB distribution is used in this project. Johnson’s SB distribution has
rarely been used in demand modelling before. Also rare is theuse of mixed logit for
forcasting purposes.

An alternative to the mixed logit model could be to use an OGEVmodel. The
OGEV model is suitable for choice of departure time since it allows the alternatives to
be ordered and the closer the alternatives are the larger thecorrelation between them
is. One benefit of the OGEV model is that a closed form exists and simulation is
not required. The SP data used when estimating the SILVESTERmodel include sev-
eral answers from the same respondent. It proved to be important to assume that, for
the same individual, unobserved factors affecting departure time choice are correlated.
This correlation could not be taken into account with a modelfrom the GEV-family
and an OGEV model could thus not be used.

For further reading on mixed logit models see Chapter 6 in [10].

3 Implementation

3.1 Equilibrium Between Demand and Supply

The model for departure time choice (Sec.2.2) is connected to an assignment model
(Sec.3.3) and changes in departure times are calculated in an iterative procedure. An
overview of the iterative process is shown in Fig.1.

The iterations between demand and supply are controlled by amonitoring program that
skims and saves data and evaluates a convergence criterion.The aim is to approach
equilibrium between demand and supply. To further illustrate how the simulation pro-
gram works the different steps are shown in a flowchart (Fig.2).

3.2 Departure Time Model Implementation

Both the monitoring program and the departure time choice model is implemented in
Matlab.

Input

In order to calculate the probabilities for choosing the different time periods and the
public transport alternative we need to know the variables included in the representative
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Figure 1: Schematic figure of departure time-assignment interaction.

utility functions (Eq.1). Once the preferred departure times are known, the size of the
schedule deviation variables are given. The variable for early departure is determined
by time period only. The season ticket variable is determined from a large travel survey
carried out before and during the Stockholm trial [5], as theratio of car travellers
who also possess a season ticket. Public transport travel durations are constant over
demand-supply iterations and are given from the Emme/2 public transport model for
Stockholm. Car travel durations and tolls are on the other hand skimmed from the
assignment model after each demand-supply iteration.

Output from the assignment model are travel durations and tolls for routes. These
are converted to OD-level:

Tdct =
α1Tr1t + ...+ αRTrRt

R
, Zdct =

α1Zr1t + ...+ αRZrRt

R
, (4)

where router1, ..., rR are the routes used by vehicles belonging to OD-paird and user
classc, andαr is the ratio of vehicles choosing router.

Remaining is the travel time uncertainty. This is the variable which is the hardest
to get a hold of. Recently camera measurements of travel times have been made for a
number of stretches in Stockholm, which has made it possibleto estimate a relationship
betweenlink travel time uncertainty and travel duration and length of the link [11]:

σlt = e−1.92+0.086Late+0.24Speed70l
T1.2

lt

L0.3
l

√

Tlt

TFF,l
−1. (5)

Late is a dummy for entering the link after 8:30,Speed70l is a dummy for links with
speed limit 70km/h,Tlt is the travel duration of linkl in time periodt, Ll is the length
of link l andTFF,l is the free flow duration of linkl . Using this relationship the travel
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Figure 2: Flowchart of the whole simulation procedure.

time uncertainty is close to zero for uncongested situations (travel durations close to
free flow durations) and grows asT1.7

lt for heavily congested situations (travel durations
≫ free flow durations).

The same report [11] also argues that the fault made when assuming that link travel
times are uncorrelated is acceptable. In order to get traveltime uncertainties for routes
we thus assume that the link travel times are uncorrelated. The uncertainty for router
in time periodt can then be calculated as:

σrt =
√

σ2
l1t + ...+ σ2

lLt , (6)

wherel1, ..., lL are the links used by router. The travel time uncertainty is then con-
verted to uncertainty for a certain OD-pair and user class inthe same way as for travel
durations and tolls (Eq.4).

Output

Each of the three departure time models calculate fifteen probability matricesP1 to
P15. Element(dc,y) in P1 contains the probability of choosing to depart before 6:30
am, given OD-paird, user classc and preferred departure time intervaly. P15 contains
the probabilities for the public transport alternative.

In the assignment model there are twelve time periods between 6:30-9:30 each
fifteen minutes long. The first and last time period in the departure time choice model
should thus be interpreted as before and after the peak in a broader sense than just
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fifteen minutes. Rowdcof the demand matrixQp is calculated as:

Qpdc =

[

14

∑
y=1

(

P2pdcyYpdcy
)

, ... ,
14

∑
y=1

(

P13pdcyYpdcy
)

]

,

whereYpdcy is a matrix containing, for each OD-paird, user classc and segmentp,
the number ofcars per hourthat has time slicey as preferred departure time interval.
Before demand is sent to assignment summation is done over the three segments:

Q =
3

∑
p=1

Qp.

3.3 Assignment Model

The dynamic route choice model CONTRAM will be used as assignment model [8].
The assignment model needs to be dynamic, since duration of atrip that departs in
some time interval may depend on traffic conditions in an earlier or later time interval.
CONTRAM is amesoscopic model, i.e. intermediate betweenmacroscopicandmi-
croscopic. It combines a macroscopic model that describes the networkstate through
aggregate quantities such as average arrival rate on a link with a microscopic model
that routes packets through a detailed network in which traffic signals, roundabouts,
etc. are coded.

A packet consists of demand that have the same origin and destination, belong to
the same user class and start in the same time period. All demand in one packet will
use the same route. Since the best route for one packet depends on flows on the links,
i.e. decisions of other packets, the process of assigning packets to the network must be
repeated in order to approach a user equilibrium.

In each iteration in CONTRAM several convergence measures are calculated:

RMS =

√

1
LT

L

∑
l=1

T

∑
t=1

(qltk −qltk−1)2, (7)

AAD =
1

LT

L

∑
l=1

T

∑
t=1

|qltk −qltk−1|,

%AAD =
100
LT

L

∑
l=1

T

∑
t=1

|qltk −qltk−1|

qltk−1
,

whereqltk is flow on link l in time periodt and iterationk. The available stability
criteria are in the order listed in Eq.7: route mean square change (< 5veh/h), aver-
age absolute difference (< 1veh/h) and percentage relative average absolute difference
(< 1%). Also supplied is the percentage of links whose flows change with less than five
percent (> 95%). Minimum requirements for convergence are given inside brackets.

CONTRAM includes time-dependent queuing methods to realistically model the
build up and dissipation of queues. The queues start at the stop line of a junction and
build up vertically. So called blocking back effects are modelled by comparing the
length of the queue with the storage capacity of the link. When 80% of the link storage
capacity is reached, CONTRAM reduces the throughput capacity of the upstream links.
The queuing model is thus relatively advanced. One thing it does not handle though is
shock waves. This means that in the model there is a free spaceat the upstream node
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of the link exactly when a packet leaves the downstream node,whereas in reality the
free space moves backwards like a wave and it takes some time before it reaches the
entrance of the link.

Input to CONTRAM is a network with appropriate characteristics and a demand
matrix (Q). For the CONTRAM network, without the departure time choice model, a
demand matrix has been estimated using traffic counts. The generalised cost function
used during this estimation was:

Ci jtc = 60Ti jtc +0.5Di jtc +Zi jtc , (8)

whereT is travel duration time,D distance andZ congestion charge.Z was zero during
this matrix estimation, since the demand matrix was calibrated for the situation without
charges.

4 Performance and Run Time

For an application to be user-friendly the run time should benot be much longer than
fifteen hours (it is then possible to start a simulation run atthe end of the day and it
will be finished when you come back next morning). With a restriction on the run time
we want to achieve best performance possible. There are several factors that affect
performance, e.g. the number of:OD-pairs, user classes, draws in the mixed logit
model, iterations in CONTRAManditerations between demand and supply. Increasing
any of these factors will (presumably) make the applicationresults more accurate, but
it will also increase the run time. The different factors will be described further below.

4.1 Reducing Number of OD-pairs Using the Fratar Method

The original demand matrix consists of 90770 OD-pairs. Thisvery large OD-matrix
gives rise to long run times in CONTRAM (about 8 hours for seven iterations). Further-
more this is just for one user class. If we want to have more user classes (see Sec.4.2
to why we want that) all OD-pairs will be counted one time for each class.

The monitoring program also has a run time which is dependenton number of OD-
pairs. This is because of the calculation of travel time uncertainty for each OD-pair. For
15970 OD-pairs this run time is 15.6 minutes, but just as for CONTRAM, the increase
in run time due to more OD-pairs is faster than linear.

There is thus a lot to gain in run time by reducing number of OD-pairs. Many of
the entries in the demand matrix are very small and with a relatively small threshold
OD-pairs can be removed while still keeping most of the demand (Tab.1).
One must however be careful to remove the small entries and have to spread out the
removed demand in a clever way, since many links have a flow with contributions from
many small demand sources. There is otherwise a risk that these links get zero flow. It
is also important to check that the trip distance distribution remains approximately the
same.

First one method is tested in which OD-pairs are removed, andthe demand spread
out by multiplying the whole matrix by number such that the total number of trips is
still the same as before the reduction. That is, we use a uniform growth factor and
apply it to all elements in the OD-matrix. This method turnedout not to be so good,
since trip origins and destinations move from zones in the inner city with little demand
to zones in the outer city with large demand. This will thus change trips from short to
long and move traffic from small inner city streets to highways.
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Trip Threshold ♯ Active OD-pairs Percent of Trips Removed
0,2 70531 0,7
0,5 50637 3,2
1 35120 7,3
2 21906 14,3
3 15970 19.8
4 12400 24,4
5 10010 28.4

Table 1: OD-pairs with number of trips starting during the whole morning period less
than the trip threshold are removed.

Instead we use the Fratar-method to adjust the new matrix, such that origin and
destination sums will coincide almost with the original ones. This is the method of
doubly constrained growth factors. The procedure is iterative and either the row or the
column sums can meet their target perfectly, at the same timeas the other one is kept
close to the target. We choose to meet column sum targets perfectly and to keep row
sums within 1% of their target values.

The reduction of OD-pairs will sometimes result in that no trips start and/or end in
some zones. For link flows that are made up of demand from thesezones the Fratar
method does not help. These zones should therefore be as few as possible. Tab.2 shows
the number of times demand from or to a zone has become zero after demand have
been spread out using the Fratar method, this for different number of active OD-pairs.
In brackets are the total demand (in number of trips) disregarded when the start/end
zones become zero.

♯Active OD-pairs ♯ start zones (trips) ♯ end zones (trips)
70531 0 (0) 0 (0)
50637 2 (3.0) 2 (5.2)
35120 3 (18.0) 2 (5.2)
21906 4 (41.2) 3 (11.2)
15970 5 (45.6) 5 (58.7)
12400 10 (263.2) 6 (147.0)
10010 19 (944.2) 7 (193.1)

Table 2: Number of zones with zero trips starting and ending respectively. Affected
♯trips in brackets.

With the Fratar method, as opposed to the uniform growth method, the total number
of trips is not exactly reproduced. The total number of tripsin the original matrix
was 267497. Using the Fratar method the total number of tripswill decrease with the
number of trips disregarded at the end zones, this since we have chosen to meet the trip
end targets exactly (except for the disregarded demand).

4.2 User Classes Depending on Value of Time

If there are several routes from an origin to a destination and they have similar costs,
then demand for travel will split between these routes. In a system with no congestion
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charges this does not imply any problems. Since the routes are perceived almost equally
good to the drivers, the travel times are also very similar and we can use a mean value
of the route travel times as travel time for that OD-pair in the departure time model.

However, if charges are added to the system the situation becomes a little bit more
tricky. The generalised cost for route choice (Eq.8) still has about the same value for
all used routes, but the travel duration times do not have to be similar anymore. On the
contrary, the situation can be one where some drivers choosea route which is free but
has a long travel time, whereas some choose a tolled but fast route. The choice of route
thus depends on each drivers value of time (VOT). To use a meanvalue of route travel
times would in this situation be a coarse calculation.

Instead the three departure time models (flex, fixed and business) are modified such
that they calculate probabilities to start in a certain timeperiod depending on user class.
Since the cost parameter differs in the population, each draw from the cost parameter
distribution belongs to a user class depending on its value of time:

VOT = 60
b2

βn
3
, (9)

whereb2 is the deterministic coeffient for travel time andβn
3 is a draw from the distri-

bution for the cost parameter. Multiplication by 60 is done to get VOT per hour instead
of per minute. The distribution of value of time is shown in Fig.3. The draws can be
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Figure 3: Value of time distribution for the three segments combined.

seen as representing different individuals. In the iterations between demand and sup-
ply an equilibrium should be sought with respect to the same individuals. We should
therefore not generate new random numbers2 (individuals) in each iteration, rather the
random numbers of the first iteration need to be used in comming iterations.

2These are pseudo random numbers generated with the commandrandn in Matlab and transformed from
the normal distribution toJohnson′s SB distribution.
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There are a portion of the population with very high value of time who in this case
can be said to be price insensitive: they will not change departure time or mode for
any of the amounts in question for a congestion charge. It is important to capture this
by having atleast two user classes. Otherwise the mean travel time and mean toll for a
cheap but slow route and a tolled but fast route will be a coarse approximation to the
network conditions for vehicles travelling from a certain origin to a certain destination.
The benefit of more than two user classes is more uncertain.

4.3 Draws in the Simulated Mixed Logit Model

As mentioned in Sec.2.3 the departure time choice model calculates choice probabil-
ities through simulation and the more draws the more accurate the result becomes.
However, run times of the departure time choice model increase with number of draws
(Tab.3 and Fig.4) and a trade off between accuracy and speed has to be made. The
simulations are run on a Dual 3.0 GHz Intel Pentium 4 with 1527MB memory.

Number of Draws Run Time (min)
10 0.72
30 1.82
50 2.92
70 4.01

Least squares approx.t = 0.055·d+0.18

Table 3: Departure time choice model run times for differentnumber of draws.
Commuters with flexible schedule and other trips.

As can be seen from Fig.4 the increase in run time is linear. How long the run time
is for a given number of draws is determined by number of OD-pairs, which here was
15970 (one user class with 15970 OD-pairs, i.e. the trip threshold of three trips during
the whole morning was used). The models for the three groups will have to be run
one after the other, thus approximately trebling the run time. For the business group
the run time is somewhat shorter since this model does not include the public transport
alternative.

4.4 Iterations in CONTRAM and Iterations Between Demand and
Supply

Iterations in CONTRAM are performed to approach a user equilibrium. For each itera-
tion the convergence measures of Sec.3.3 improve, but each additional iteration implies
additional run time. The same goes for iterations between demand and supply. The lat-
ter is also dependent on CONTRAM convergence, since the application will presum-
ably approach a demand-supply equilibrium faster if the route choice has converged
reasonably well.
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Figure 4: Linear dependence between runtime and number of draws.

4.5 Performance Criterion

We will decide how many user classes, draws in the departure time models, iterations
in CONTRAM and iterations between demand and supply to use bycomparing the
effects of different parameter settings on resulting performance, which we measure by
Eq.10:

E = 100·
∑i jtc QI

i jt p |C
A
i jt p −CI

i jt p|

∑i jt p QI
i jt pCI

i jt p
, (10)

whereI is an ”ideal” case in which all parameters take on their highest values (Tab.4)
andA is an approximate case under evaluation. Eq.11 shows the expression we use for
generalised cost:

Ci jt p =
β̄p

1SDEi jt p +bp
1SDE730i jt p + β̄p

2SDLi jt p + β̄p
3Zi jt p +bp

2Ti jt p +bp
3σi jt p

β̄p
3

, (11)

where mean values are used for the random parametersβ. The generalised cost is thus
not dependent on user class, which is important since we wantto evaluate the effect of
different number of user classes.

From the ideal run we get a reference valueCI to aim towards. Its very important
that this ideal run has converged properly and it is possiblethat we will continue the
demand-supply iterations above the highest value (12) if convergence it not satisfactory.

First an approximation where all parameters take on their lowest values is evaluated
and then the parameters are varied one at the time to capture the influence of a certain
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Parameter Lowest Value Highest Value
♯User Classes 2 5
♯Draws 20 200
♯Iterations in CONTRAM 6 10
♯Iterations in D/S 4 12

Table 4: Parameter settings

parameter on resulting performance. For all runs the value on E and the run time will
be noted down.

5 Convergence

In the end, the purpose of the application developed in this project is to calculate socio-
economic benefits of congestion charges or road investments, taking departure time
choice into account. One measure of consumer surplus of a strategy compared to a do
nothing scenario is the so calledrule-of-a-half3 [7]:

∆S = ∑
i jt p

(

C1
i jt p −C2

i jt p

)

(

Q1
i jt p +Q2

i jt p

)

2
+ ∑

i jt p
Zi jt p , (12)

whereC1 is generalised cost in the do nothing scenario,C2 is generalised cost in the
scenario with congestion charges andZ is amount of collected charges. The collected
amount need to be added since it can be used for purposes beneficial to society.

As a measure of closeness to convergence during a simulationrun of our program
there are several candidates:

e1k = 100·
∑i jt p Ci jt p,k|Qi jt p,k−Qi jt p,k−1|

∑i jt p Ci jt p,kQi jt p,k−1
. or (13)

e2k = 100·
∑i jt p Qi jt p,k|Ci jt p,k−Ci jt p,k−1|

∑i jt p Qi jt p,kCi jt p,k−1
or

e3k = 100·
∑i jt p Qi jt p,k(Ci jt p,k−Ci jt p,k−1)

2

∑i jt p Qi jt p,k(Ci jt p,k−1)2 .

All three measures are in percent. In DIADEMe1 is used and it is called the percentage
demand/supply gap (%GAP). Recommended level for convergence is a value of %GAP
which is less than 0.2%. Also recommended is that the consumer surplus, expressed
as percentage of total network costs, should be more than tentimes larger than %GAP
[12].

The measurese2 ande3 are however more similar to the expression for consumer
surplus (Eq.12). As a measure of how close the simulation is to convergence we will
therefore usee2. The generalised costC in Eq.13 is the same as in Eq.11.

In order to reach convergence in a reasonable number of iterations some form of
damping, in which the present solution from assignment is combined with the solution
of the previous iteration, is needed. The previous solutionbecomes more and more

3In future benefit assessments we will have to evaluate if moresofisticated methods than the rule-of-a-half
shall be used.
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trustworthy for each iteration. A common way to combine the two solutions is therefore
themethod of successive averages(MSA):

Tk = T̂k ·λk +Tk−1 · (1−λk), (14)

Zk = Ẑk ·λk +Zk−1 · (1−λk),

σk = σ̂k ·λk + σk−1 · (1−λk),

λk =
1
k
.

There are other damping algorithms as well, but to evaluate them is a whole project
in its own. MSA is the most established method and will therefore be used in this
implementation.

6 Conclusions

One question important to this paper is whether to model departure or arrival time.
Since the respondents choose departure time on the basis of their preferred arrival
time(PAT)one could argue the PAT should be used instead of PDT. This is however
most important to travellers with fixed working hours, whichis a small group in our
sample. In addition, when travel time is uncertain, the travellers can not choose arrival
time, only departure time. Modelling departure time is alsoeasier from an implemen-
tation perspective, since the assignment model CONTRAM takes demand partitioned
into departure time intervals as input. We have on the basis of what has been said above
chosen to model departure time. The PDT:s will have to be adjusted if travel durations
change a lot, this to preserve the PAT-distribution.

In Sec.4.1 we saw that if we remove OD-pairs with very little demand and raise
the remaining matrix with a percent such that total demand isthe same, then demand
is shifted from inner city start and end zones to start and endzones in the outer region.
Thus, traffic is transfered from small inner city streets to large approach roads. We
therefore conclude that the uniform growth method does not work well in this case and
the Fratar method shall be used instead, which proved to workwell.

When congestion charges are added to the network we cannot use the same mean
travel duration for everybody anymore, since the travel durations are no longer simi-
lar. We thus conclude that more than one user class is needed.Which user class an
individual (draw) belongs to depends on its value of time.

From Tab.3 one can conclude that the implementation of the departure time choice
model is fast enough. The increase in run time due to more draws is linear. Since
CONTRAM does not calculate travel time uncertainty, we haveto build an own model
and calculate the uncertainty before it is sent to the departure time choice model. This
travel time uncertainty calculation is heavily dependent on number of OD-pairs and the
run time can become crusial for large OD-matrices and/or many time value classes.

7 Future Work

7.1 Ideal Starting Times

In Sec.3.2 it was not explained how to calculate the matrix ofpreferred departure times
Y. For a congested situation they cannot be observed, since itis not certain that they
are equal to actual starting times. Another option would be to ask travellers about their
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preferred time of travel, but this kind of survey is both expensive and unreliable. Instead
the PDT:s will be estimated using a reverse engineering approach. The approach is
described for one OD-pair in [9]. In this project the reverseengineering approach will
be applied to the whole network of Stockholm. The application of reverse engineering
to so many OD-pairs has not been done before.

The reverse engineering idea is as follows: for a base scenario use observed number
of departures in each time period together with a departure time model (for example
the one described in this paper) and calculate ideal starting times ”backwards”. The
ideal starting times can be revealed from the observed ones since the departure time
model contains information on how travellers trade-off travel time and deviation from
ideal starting time. The next step is to use the ideal starting times in order to calculate
actual starting times in an updated scenario, for example one with congestion charges
added to the base situation.
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Nomenclature

Variable Description

b Deterministic coefficients
β Random coefficients
C Generalised cost
D Distance
e Deviation between iterations
ε Unobservable part of utility, Gumbel distributed
η Unobservable part of utility, Normally distributed
P Probability
Q Traffic flow matrix (demand matrix)
Z Toll (congestion charge)
S Socio-economic-benefit

SDE/SDL Schedule deviation early/late
σ Travel time uncertainty
T Travel duration time
U Random utility
V Observable part of utility

Table 5: Description of Variables

Index Description

a alternative
â a certain alternative
c class
i origin
j destination
k iteration
l link
d OD-pair
n decision maker
p trip purpose
r route
s scenario
t time interval
y preferred time interval

Table 6: Description of Indices

19


