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1 Introduction

Congestion pricing has been around for over 80 years and many have since recognized it as an
efficient method for regulating congestion. Furthermore, recent advent of electronic tolling makes
congestion pricing more practical and many successful implementations exist world wide. On the
other hand, getting the public to accept congestion pricing is still an obstacle. Congestion pricing
schemes proposed for Hong Kong, Cambridge (England) and Edinburgh were not implemented.
Ten or more road pricing proposals were “largely abandoned” in United Kingdom (see [7]).

While there are many reasons why congestion pricing often fails to gain public acceptance,
transportation economists (e.g., [5]) have pointed out recently that pricing schemes advocated
in the literature such as marginal cost (MC) pricing are “most likely doomed to be political
failures” because users will find themselves worse off. Governmental or transportation authorities
are generally the only stakeholders who are better off because of the toll revenue they collect.

To make congestion pricing more appealing, we propose an approach less extreme than marginal
cost and other forms of first-best pricing. These schemes use tolls as a mean to encourage users
to use routes that result in a system optimal flow distribution, i.e., one with the least travel
delay possible. As pointed out in [5], this approach creates inequity, in that many users are
worse off when compared to the situation without pricing. Our pricing scheme, instead, tries to
reduce delay while ensuring some users are better off and no one is worse off. Although such
a scheme does not necessarily lead to a system optimal flow pattern, it has a better chance of
being accepted (implemented and, eventually, reducing delay) because no one is made worse off.

We assume herein that the travel demands are fixed. (See [8] for the elastic demand case.) For
the remainder, Section 2 illustrates with an example the inequity in MC and other forms of first-
best pricing schemes. Section 3 introduces notation and defines dominating flow distributions.
Under such flow distributions, some users are better off and no one is worse off when compared
to the distribution under user equilibrium. In [1] and [4], the authors refer to a dominating flow
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distribution as a Generalized Braess Paradox and propose models and an algorithm for finding
them. Section 4 defines conditions under which a nonnegative toll vector is Pareto-improving
and establishes existence conditions for such a vector. Finally, Section 5 gives conclusions.

2 Inequity in First-Best Pricing Schemes

To illustrate the inequity in MC and other forms of first-best pricing, consider the network in
Figure 1 (see [4]) in which there is only one OD pair (1, 4) with a demand of 3.6.

 
 
 
 

10v24 50+v12 

10v13 

10+v32 

2+25v34 

3 

4 

2 

1 

Cost function: 
tij(vij) 

Figure 1: A five-link network from [4]

Table 1 displays the link and path flows under user equilibrium (UE) and MC pricing along with
the associated costs. Recall that tolls under MC pricing are of the form t′a(va)va, where t′a(va)
is the derivative of the travel time function, ta(·), and va is the system optimal flow on link a.

UE MC Pricing
Links Flow Time Sys. Opt. Flow Time Toll Gen. Cost

(1, 3) 3.6 36.00 2.0641 20.641 20.64 41.28
(1, 2) 0 50.00 1.5359 51.5359 1.54 53.07
(3, 2) 2.2778 12.28 0.8956 10.8956 0.90 11.79
(3, 4) 1.3222 35.06 1.1685 31.2125 29.21 60.43
(2, 4) 2.2778 22.78 2.4315 24.315 24.32 48.63

Paths
1-3-4 1.3222 71.06 1.1685 51.85 49.85 101.70

1-3-2-4 2.2778 71.06 0.8956 55.85 45.85 101.70
1-2-4 0 72.78 1.5359 75.85 25.85 101.70

Costs to users 255.82 227.11 139.02 366.13

Table 1: Flow distributions under UE and MC pricing for the five-link network

When implemented, MC pricing forces 1.5359 users to use path 1→ 2 → 4 with a total cost of
101.70, of which 75.85 is the travel time and the rest (25.85) is for tolls (measured in time units).
Thus, these 1.5359 users suffer twice, once for having to use a longer route (75.85 instead of
71.06) and the other for having to pay tolls. Overall, the total cost to the 3.6 users under MC
pricing is 366.13 which is more than the total cost (225.82) under UE, a cost consisting entirely
of time or delay. However, MC pricing yields less total delay (227.11) and generates toll revenue



TRISTAN VI: The Sixth Triennal Symposium on Transportation Analysis 3

(139.02) for the transportation authority. Thus, under MC, every user is worse off and the only
one better off is the transportation authority.

3 Dominating Flow Distributions

Instead of trying to achieve a system optimal distribution, we consider a flow distribution with
less delay than that under UE. We say that a flow distribution “dominates” the UE distribution
if it strictly improves a measure of system efficiency and allows all users to use routes that are
no longer (in travel time) than those under UE. (For brevity, we also say that a flow distribution
is “dominating” if it dominates the UE distribution.) Below, we consider total delay as the
measure of system efficiency (see [8], for other measures).

3.1 Feasible Flow Distributions

Let V F be a set consisting of all feasible flow distributions, each of which is denoted as v. In
particular, v ∈ Rn and V F ⊆ Rn, where n is the number of links in the transportation network.
The set V F can be described using either path or link flow variables. Using the former, let fw

r and
dw denote the amount of flows on path (or route) r and the demand for OD pair w, respectively.
Then,

V F = {v : va =
∑

w

∑
r∈P w

δarf
w
r ;

∑
r∈P w

fw
r = dw, ∀w; fw

r ≥ 0, ∀w, r},
where Pw is the set of paths for OD pair w and δar (equals 0 or 1) indicates whether arc a is on
path r. Alternatively, let A be the node-arc incidence matrix for the network and Ew denote
a vector in Rm, where m is the number of nodes. The vector Ew has exactly two non-zero
components, one has a value 1 in the component corresponding the origin node of OD pair w
and the other has a value -1 in the component for the destination. Then, V F can be written as

V F = {v : v =
∑

w
xw, Axw = Ewdw, xw ≥ 0, ∀w}

where xw ∈ Rm is a vector whose components are link flows for OD pair w.

3.2 Finding Dominating flow Distributions

Mathematically, we say that a flow distribution v ∈ V F dominates a given UE distribution or
is dominating if v and its path flows fw

r satisfy the following conditions for every OD pair w:
∑

a
δarta(va) ≤ cUE

w , ∀r ∈ Pw
+ (v) (1)

t(v)T v < t(vUE)T vUE (2)

where cUE
w denotes the travel time for OD pair w under UE, t(·) denotes a vector of link travel

functions, ta(·), Pw
+ (v) = {r : r ∈ Pw, fw

r > 0} is the set of utilized paths associated with v, and
vUE is the UE flow distribution, i.e., vUE satisfies t(vUE)T (v−vUE) ≥ 0, ∀v ∈ V F . In particular,
(1) ensures that all users are not worse off and (2) guarantees that some are better off. If v is
dominating, then (2) implies that there must exist at least one utilized path, say r′ ∈ Pw

+ for
some OD pair w, such that

∑
a δar′ta(va) < cUE

w , i.e., users of path r′ are better off. Otherwise,∑
a δarta(va) = cUE

w for every w and r ∈ Pw
+ , implying that t(v)T v = t(vUE)T vUE . The latter

contradicts the fact that v is dominating and satisfies (2).
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To illustrate, Table 2 lists the UE and dominating flow distributions for the five-link network
in Figure 1. The latter are in columns labeled DF-F-1, DF-F-2, and DF-F-3. Observe that the
lengths of the longest utilized path for the three dominating distributions are no greater than
the one for UE. Among the three, the longest path for DF-F-1 is the shortest while DF-F-3
yields the smallest total delay. In addition, a convex combination of DF-F-2 and DF-F-3 is
also dominating. Thus, the number of dominating flow distributions for the five-link network is
infinite.

Link Flows
Links UE DF-F-1 DF-F-2 DF-F-3
(1, 3) 3.60 1.90 2.24 2.24
(1, 2) 0.00 1.70 1.36 1.36
(3, 2) 2.28 0 0.45 0.61
(3, 4) 1.32 1.90 1.79 1.63
(2, 5) 2.28 1.70 1.81 1.97

Cost of the Longest Utilized Path 71.06 68.7 69.4 71.06
System Cost or Total Delay 255.82 247.1 241.17 234.99

Table 2: UE and dominating flow distributions

To find a dominating flow distribution, Abrams and Hagstrom [1] formulate an optimization
problem equivalent to the following:

DF-F: min t(v)T v

s.t. v ∈ V F

fw
r (

∑
a
δarta(va)− cUE

w ) ≤ 0, ∀w, and r ∈ Pw.

Note that the last constraint in the above problem ensures that, if path r is utilized, its travel
time,

∑
a δarta(va), must not be larger than the travel time under UE. As formulated above,

DF-F is an optimization problem with complementarity constraints, a difficult class of problem
to solve optimally (see, e.g., [9]). However, there is a practical method (see [1]) for finding a
local optimal solution to DF-F by allowing only routes utilized in the UE distribution to have
positive flows.

Let ṽ be an optimal solution to the DF-F problem. If t(ṽ)T ṽ < t(vUE)T vUE , then (2) holds and
the complementarity constraints ensures that (1) also hold as well. Thus, ṽ must be dominat-
ing. When t(ṽ)T ṽ = t(vUE)T vUE , there is no v ∈ V F that satisfies both (1) and (2), i.e., no
dominating distribution exists. Note that for the five-link network, DF-F-3 in Table 2 solves the
DF-F problem and the other two do not.

4 Nonnegative Pareto-Improving Tolls

In this section, we assume that a dominating distribution is given and investigate whether there
exists a Pareto-improving toll vector that can induce the distribution. As mentioned previously,
our focus is on nonnegative toll vectors.

Let ṽ denote a given dominating distribution. With respect to the travel costs under UE, a
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nonnegative toll vector, τ , is ‘Pareto-improving’ if it satisfies the following conditions:
∑

a
δar(ta(ṽa) + τa) = λw, ∀w and r ∈ P̃w

+ (ṽ) (3)
∑

a
δar(ta(ṽa) + τa) ≥ λw, ∀w and r ∈ P̃w

0 (ṽ) (4)

τ ≥ 0 (5)
λw ≤ cUE

w , ∀w (6)

Similar to before, P̃w
+ (ṽ) = {r : r ∈ Pw, f̃w

r > 0} and P̃w
0 (ṽ) = {r : r ∈ Pw, f̃w

r = 0} are the
sets of utilized and non-utilized paths associated with ṽ, respectively. For each OD pair, the
first two conditions ensure that τ is a “valid” toll vector (see, e.g., [6]), in that they force the
utilized paths associated with ṽ to have the same generalized travel cost that is no greater than
those for the non-utilized paths. The fourth condition, (6), ensures that the generalized cost for
each OD pair is no greater than the user equilibrium travel time. Without the nonnegativity
requirement in (5), setting τ = −t(ṽ) trivially satisfies conditions (3) - (6) and the resulting
generalized travel cost is zero for all paths. Thus, τ = −t(ṽ) is Pareto-improving. When τ must
be nonnegative, a Pareto-improving toll vector may not exist. For example, the counterexample
in [2] implies that a nonnegative toll vector does not exist when ṽ contains a directed cycle.

The following theorem from [2] provides a necessary and sufficient condition for the existence of
a toll vector satisfying the first three Pareto-improving conditions, (3) - (5). We restate it here
for convenience.

Theorem 1 There is a toll vector, τ , satisfying conditions (3) - (5) if and only it ṽ satisfies
the following variational inequality (the bounded user equilibrium problem with fixed demands or
BUE-F):

t(ṽ)T (v − ṽ) ≥ 0, ∀v ∈ V
F

where V
F = {v : v ∈ V F , va ≤ ṽa}.

In the above theorem, if ṽ solves BUE-F then the Lagrangian multipliers, τ̃ , associated with the
upper bounds on va are nonnegative and naturally satisfy (3) - (5). However, these multipliers
are not unique and solving the following problem can identify a Pareto-improving toll vector, if
one exists.

min
∑

w sw

s.t.
∑

a δar(ta(ṽa) + τa) = λw ∀w and r ∈ P̃w
+∑

a δar(ta(ṽa) + τa) ≥ λw ∀w and r ∈ P̃w
+

τ ≥ 0
λw − sw ≤ cUE

w , ∀w
If the optimal objective value is zero, then the τ∗ component of an optimal solution, (τ∗, λ∗, s∗),
to the above problem is a Pareto-improving toll vector. Alternatively, the theorem below pro-
vides a sufficient condition under which the Lagrangian multipliers from BUE-F also satisfy (6).
(See [8] for the proofs of the results stated below.)

Theorem 2 Let ṽ be a dominating distribution that solves the BUE-F problem. If there exists
a vector of multipliers, τ̃ , associated with the constraints va ≤ ṽa such that, for every OD pair
w,

∑
a δar τ̃r = 0 for some r ∈ P̃w

+ , then τ̃ is a Pareto-improving toll vector.
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When there is only one origin (or, equivalently, one destination) in the problem, Theorem 2 can
be strengthened. In this case, the problem reduces to a network problem with one commodity
and V F can be written as {v : Av =

∑
w Ewdw, v ≥ 0}.

Lemma 3 Assume that there is only one origin and ta(·) is an increasing function for all a. If
ṽ solves the DF-F problem, then ṽ also solves the BUE-F problem.

Corollary 4 If there is only one origin and ta(·) is an increasing function for all a, then there
is always a Pareto-improving toll vector associated with a dominating distribution that solves the
DF-F problem

To illustrate, consider the five link example in Figure 1. Table 3 displays the UE distribution
and DF-F-2, a dominating distribution in Table 2.

UE Pareto-Improving Tolls
Links Flow Time DF-F-3 (ṽ) Time (ta(ṽ)) τ1 Gen. Cost

(1, 3) 3.6 36.00 2.24 22.4 0.00 22.40
(1, 2) 0 50.00 1.36 51.36 0.00 51.36
(3, 2) 2.2778 12.28 0.45 10.45 18.51 28.96
(3, 4) 1.3222 35.06 1.79 46.75 0.31 47.66
(2, 4) 2.2778 22.78 1.81 18.1 0.00 18.10

Paths
1-3-4 1.3222 71.06 1.79 65.15 0.31 69.46

1-3-2-4 2.2778 71.06 0.45 50.97 18.51 69.46
1-2-4 0 72.78 1.36 69.46 0.00 69.46

Costs to users 255.82 241.17 8.88 250.06

Table 3: UE Distribution and Pareto-Improving Tolls

To determine Pareto-improving tolls in Corollary 4, construct the longest path tree using the
link cost ta(ṽ) in Table 3. Based on this longest path tree, Dial’s algorithm [3] sets the tolls on
link (3, 2) and (3, 4) to be τ32 = 18.51 and τ34 = 0.31. Doing so produces the toll vector τ1 =
[0.0, 0.0, 18.51, 0.31, 0.0]T . Under τ1, everyone (users, transportation authority, and society) is
better off. The generalized cost (see the last column in Table 3) of every path equals 69.46,
1.6 units less than that (71.06) under UE. Of the 3.6 users, 2.24 users who pay tolls actually
get to use routes (with travel times of 65.15 and 50.97) shorter than the toll-free route (69.46).
From the last row, the transportation authority collects 8.88 in toll revenue and the total delay
decreases from 255.82 (under UE) to 241.17, approximately 6% more than the least possible
(227.11).

5 Conclusion

The talk focuses on finding “Pareto-improving” tolls, a congestion pricing scheme that makes
some user better off and no one worse off, when compared to the situation without pricing. In
addition, a Pareto-improving scheme induces a dominating flow distribution, a concept equiva-
lent to a Generalized Braess Paradox introduced earlier in [4]. Because they do not always exist,
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we provide sufficient conditions for the existence of a nonnegative Pareto-improving toll vector.
In particular, we show that a Pareto-improving toll vector always exists when there is only one
origin or destination.
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